
Title: Succinct and Compressed Data Structures for Permu-
tations and Integer Functions

Name: Jérémy Barbay
A�l./Addr. Department of Computer Science (DCC)

Faculty of Physical and Mathematical Sciences
University of Chile.

Keywords: Adaptive; Compression; Permutation; Functions.
SumOriWork: 2012; Munro, Raman, Raman, Rao

2012; Barbay, Fischer, Navarro
2013; Barbay, Navarro
2013; Barbay

Succinct and Compressed Data
Structures for Permutations and
Integer Functions
Jérémy Barbay

Department of Computer Science (DCC)
Faculty of Physical and Mathematical Sciences
University of Chile.

Years and Authors of Summarized Original Work

2012; Munro, Raman, Raman, Rao
2012; Barbay, Fischer, Navarro
2013; Barbay, Navarro
2013; Barbay

Keywords

Adaptive; Compression; Permutation; Functions.

Problem De�nition

A basic building block for compressed data structures for texts and functions is the
representation of a permutation of the integers {1, . . . , n}, denoted by [1..n]. A per-
mutation π is trivially representable in ndlg ne bits which is within O(n) bits of the
information theoretic bound of lg(n!), but instances from restricted classes of permu-
tations can be represented using much less space.

Encoding or compressing a particular permutation is useless if one cannot access
its content e�ciently. Given a permutation π over [1..n], an integer k and an integer
i ∈ [1..n], data structures on permutations aim to support the following operators as
fast as possible, using as little additional space as possible:

http://dcc.uchile.cl/
http://www.fcfm.cl/
http://www.uchile.cl/
http://dcc.uchile.cl/
http://www.fcfm.cl/
http://www.uchile.cl/

Keywords 2

• π(i): application of the permutation to i,
• π−1(i): application of the inverse permutation to i,
• πk(i)(): π() iteratively applied k times starting with value i (e.g. π(2)(i) =

π(π(i))).

Key Results

We distinguish between two types of solutions: the succinct index and two succinct data
structures for permutations introduced by Munro et al. [1], and the various compressed
data structures proposed later [2, 3, 4].

Succinct Data Structures

Munro et al. [1] studied the problem of succinctly representing a permutation to support
operators on it quickly. They give several solutions, described below.

"Shortcut" Index supporting π() and π−1() Given an integer parameter t, the
operators π() and π−1() can be supported by simply writing down π in an array of n
words of dlg ne bits each, plus an auxiliary array S of at most n/t back pointers called
shortcuts: In each cycle of length at least t, every t-th element has a pointer t steps
back. Then, π(i) is simply the i-th value in the primary structure, and π−1(i) is found
by moving forward until a back pointer is found and then continuing to follow the cycle
to the location that contains the value i.

The trick is in the encoding of the locations of the back pointers: this is done
with a simple bit vector B of length n, in which a 1 indicates that a back pointer is
associated with a given location. B is augmented using within o(n) additional bits so
that the number of 1's up to a given position and the position of the r-th 1 can be
found in constant time (i.e. using the rank and select operators on binary strings [5]).
This gives the location of the appropriate back pointer in the auxiliary array S. As
there are back-pointer every t elements in the cycle, �nding the predecessor requires
O(t) memory accesses.

Theorem 1. For any strictly positive integer n and any permutation π on [1..n] which
can be decomposed into δ cycles of respective sizes c1, . . . , cδ, there is a representation

of π using within (
∑

i∈[1..δ]d
ci
t
e) lg n+ 2n+ o(n) ⊆ n lgn

t
+ 2n+ o(n) bits to support the

operator π() in constant time, and the operator π−1() in time within O(t).

Interestingly enough, Munro et al. [1] did not notice that their construction is
actually an index, and that the raw encoding can be replaced by any data structure
supporting the operator π(), including the compressed ones later described [4].

"Cycle" Data Structure supporting πk() For arbitrary i and k, πk() is supported
by writing the cycles of π together with a bit vector B marking the beginning of
each cycle. Observe that the cycle representation itself is a permutation in �standard
form�, call it σ. The �rst task is to �nd i in the representation: it is in position σ−1(i).
The segment of the representation containing i is found through the rank and select
operators on B. Then πk(i) is determined by taking k modulo the cycle length, moving
that number of steps around the cycle starting at the position of i, and applying σ()
to obtain the value to return.

Other than the support of the inverse of σ, all operators are performed in con-
stant time, hence the asymptotic supporting time of πk() depends on the supporting

Keywords 3

time in which the data structure chosen to represent σ supports the operators σ()
and σ−1(). Munro et al. [1] proposed the following, using a raw encoding of σ with a
shortcut index to support σ−1():

Theorem 2. For any strictly positive integer n and any permutation π on [1..n], there
is a representation of π using at most (1 + ε)n lg n+O(n) bits to support the operator

πk() in time within O(1/ε), for any constant ε less than 1 and for any arbitrary value

of k.

Under a restricted model of pointer machine, this technique is optimal: using
O(n) extra bits (i.e. O(n/ log n) extra words), time within Ω(log n) is necessary to
support both π() and π−1().

"Benes Network" Data Structure supporting πk() Any permutation can be im-
plemented by a communication network composed of switches: this is called a Benes
Network, and uses even less space under the RAM model than the solutions described
in the previous sections. Sparsely adding pointers accelerates the support of πk() to
time within O(logn

log logn
).

Theorem 3. For any strictly positive integer n and any permutation π on [1..n], there
is a representation of π using at most dlg(n!)e+O(n) bits to support the operator πk()
in time within O(log n/ log log n).

This representation uses space within an additive term within O(n) of the op-
timal, both on average and in the worst case over all permutations over [1..n].

Compressed Data Structures

Any comparison-based sorting algorithm yields an encoding for permutations, and any
adaptive sorting algorithm in the comparison model yields a compression scheme for
permutations. Supporting operators on such compressed permutation in less time than
required to decompress the whole of it requires some more work:

Runs Barbay and Navarro [2] described how to segment a partition into nRuns runs

composed of consecutive positions forming already sorted blocks, and how to merge
those via a wavelet tree. This yields a data structure compressing a permutation within
space optimal over all permutations with nRuns runs of respective sizes given by the
vector vRuns. This data structure supports the operators π() and π−1() in sublinear
time within O(1+log nRuns), with the average supporting time within O(1+H(vRuns))
decreasing with the entropy of the partition of the permutation into runs, where the
entropy of a sequence of positive integersX = 〈n1, n2, . . . , nr〉 adding up to n isH(X) =∑r

i=1
ni

n
lg n

ni
.

Theorem 4. For any strictly positive integer n and any permutation π on [1..n] which
can be decomposed into nRuns runs of respective sizes vRuns = (r1, . . . , rnRuns), there is

a representation of π using at most nH(vRuns)+O(nRuns log n)+ o(n) bits to support

the computation of π(i) and π−1(i) in time within O(1 + log nRuns) in the worst case

over i ∈ [1..n] and in time within O(1 + H(vRuns)) on average when i ∈ [1..n] is
uniformly distributed. This compressed data structure can be computed in time within

O(n(1+H(vRuns))), which is worst-case optimal in the comparison model over all such

permutations decomposed into nRuns runs of respective sizes given by the vector vRuns.

The partitioning takes only n−1 comparisons, and the construction of the compressed
data structure itself is an adaptive sorting algorithm improving over previous results
[6, 7].

Keywords 4

Heads of Strict Runs A two-level partition of the permutation yields further com-
pression [2]. The �rst level partitions the permutation into strict ascending runs (max-
imal ranges of positions satisfying π(i + k) = π(i) + k). The second level partitions
the heads (�rst position) of those strict runs into conventional ascending runs. This is
analogous to the notion of Blocks described by Mo�at and Petersson [7] for multisets.

Theorem 5. For any strictly positive integer n and any permutation π on [1..n]
which can be decomposed into nBlock strict runs and into nRuns ≤ nBlock mono-

tone runs, let vHRuns be the vector formed by the nRuns monotone run lengths in the

permutation of strict run heads. Then, there is a representation of π using at most

nBlockH(vHRuns)) + O(nBlock log n
nBlock

) + o(n) bits to support the operator π() and

π−1() in time within O(1+log nBlock). This compressed data structure can be computed

in time within O(n(1 + log nBlock)).

Shu�ed Subsequences The preorder measures seen so far have considered runs
which group contiguous positions in π: this does not need to be always the case. A
permutation π over [1..n] can be decomposed in n comparisons into a minimal number
nSUS of Shu�ed Up Sequences, de�ned as a set of, not necessarily consecutive, subse-
quences of increasing numbers that have to be removed from π in order to reduce it to
the empty sequence [8]. Then those subsequences can be merged using the same tech-
niques as above, which yields a new adaptive sorting algorithm and a new compressed
data structure [2]. An optimal partition of a permutation π over [1..n] into a minimal
number nSMS of Shu�ed Monotone Sequences, sequences of not necessarily consecutive
subsequences of increasing or decreasing numbers, is NP -hard to compute [9] but if
such a permutation is given, the same technique applies [10].

LRM Subsequences LRM-Trees partition a sequence of values into consecutive
sorted blocks, and express the relative position of the �rst element of each block within
a previous block. Such a tree can be computed in 2(n−1) comparisons within the array
and overall linear time, through an algorithm similar to that of Cartesian Trees [11].
The interest of LRM trees in the context of adaptive sorting and permutation compres-
sion is that the values are increasing in each root-to-leaf branch: they form a partition
of the array into sub-sequences of increasing values. Barbay et al. [3] described how
to compute the partition of the LRM-tree of minimal size-vector entropy, which yields
a compressed data structure asymptotically smaller than H(vRuns)-adaptive sorting,
and smaller in practice than H(vSUS)-adaptive sorting; as well as a faster adaptive
sorting algorithm.

Number of Inversions The preorder measure nInv counts the number of pairs (i, j)
of positions 1 ≤ i < j ≤ n in a permutation π over [1..n] such that π(i) > π(j). Its
value is exactly the number of comparisons performed by the algorithm Insertion

Sort, between n and n2 for a permutation over [1..n]. A variant of Insertion Sort,
named Local Insertion Sort, sorts π in n(1 + dlg(nInv/n)e) comparisons [7, 6].

Simply encoding the n values (π(i)− i)i∈[1..n] using the γ′ code from Elias [12],
and indexing the positions of the beginning of each code by a compressed bit vector
yields a compressed data structure supporting the operator π() in constant time. The
resulting data structure uses space within n(1 + 2 lg nInv

n
) + o(n) bits. Support for the

operator π−1() can be added in two distinct ways, either encoding both π and π−1

using this technique within 2n(1+2 lg nInv
n

)+ o(n) bits, which supports both operators
π() and π−1() in constant time; or adding support for the operator π−1() using Munro
et al.'s shortcut succinct index for permutations [1] described previously.

Open Problems 5

Removing Elements The preorder measure nRem counts the minimum number of
elements that must be removed from a permutation so that what remains is already
sorted. Its exact value is n minus the length of the Longest Increasing Subsequence,
which can be computed in time within O(n log n). Alternatively, the value of nRem can
be approximated within a constant factor of 2 in 2(n − 1) comparisons. Partitioning
π into the removed elements and the remaining ones through a bit vector of n bits;
representing the order of the 2nRem elements in a wavelet tree (using any of the data
structures described above); and representing the merging of both into n bits; yields a
compressed data structure using space within 2n + 2nRem lg(n/nRem) + o(n) bits and
supporting the operators π() and π−1() in sublinear time, within O(1+ log(nRem+1)).

Applications

Integer Functions

Munro et al. [1] extended the results on permutations to arbitrary functions from [1..n]
to [1..n]. Again fk(i) indicates the function iterated k times starting at i: if k is non-
negative, this is straightforward. The case in which k is negative is more complicated
as the image is a (possibly empty) multiset over [1..n].

Whereas π is a set of cycles, f can be viewed as a set of cycles in which each node
is the root of a tree. Starting at any node (element of [1..n]), the evaluation moves one
step along a branch of the tree, or one step along a cycle. Moving k steps in a positive
direction is straightforward, one moves up a tree and perhaps around a cycle. When k
is negative, one must determine all nodes at distance k from the starting location, i,
in the direction towards the leaves of the trees. The key technical issue is to run across
succinct tree representations picking o� all nodes at the appropriate levels. Using a
raw encoding of the permutation mapping integers to the nodes, and Munro et al.'s
shortcut succinct index [1] to support the operations on it yields the following result:

Theorem 6. For any �xed ε, n > 0 and f : [1..n]→ [1..n] there is a representation of

f using (1+ε)n lg n+O(1) bits of space to computes fk(i) in time within O(1+ |fk(i)|),
for any integer k and for any integer i ∈ [1..n].

Open Problems

Other measures of disorder

Mo�at and Petersson [7] list many measures of preorder and adaptive sorting tech-
niques. Each measure explored above yields a compressed data structure for permuta-
tions supporting the operators π() and π−1() in sublinear time. Each adaptive sorting
algorithm in the comparison model yields a compression scheme for permutations, but
the encoding thus de�ned does not necessarily support the simple application of the
permutation to a single element without decompressing the whole permutation, nor
the application of the inverse permutation. More work is required in order to decide
whether there are compressed data structures for permutations, supporting the opera-
tors π() and π−1() in sublinear time and using space proportional to the other preorder
measures[7, 6] (e.g. Reg, Exc, Block and Enc).

Recommended Reading 6

Sorting and Encoding Multisets

Munro and Spira [13] showed how to sort multisets through MergeSort, Insertion
Sort and Heap Sort, adapting them with counters to sort in time within O(n(1 +
H(〈m1, . . . ,mr〉))) where mi is the number of occurrences of i in the multiset (note
that this is orthogonal to the results described in this chapter, that depend on the
distribution of the lengths of monotone runs). It seems easy to combine both approaches
(e.g. on MergeSort in a single algorithm using both runs and counters), yet quite hard
to analyze the complexity of the resulting algorithm and compressed data structure.
The di�culty measure must depend not only on both the entropy of the partition into
runs and the entropy of the partition of the values of the elements, but also on the
interaction of those partitions.

Compressed Data Structures Supporting πk()

In Munro et al.'s �Cycle� data structure [1] for supporting the operator πk() (Theorem
2), the raw encoding of the permutation σ representing the cycles of π can be replaced
by any compressed data structure such as those described here, with the warning that
the compressibility of σ depends not only on π but also on the order in which its
cycles are placed in σ. The question to know if there is a compressed data structure
supporting the operator πk() which takes advantage of this order is open.

Recommended Reading

1. J. Ian Munro, Rajeev Raman, Venkatesh Raman, and S. Srinivasa Rao. Succinct representations
of permutations and functions. Theor. Comput. Sci., 438:74�88, 2012.

2. Jérémy Barbay and Gonzalo Navarro. On compressing permutations and adaptive sorting. The-
oretical Computer Science (TCS), 513:109�123, 2013.

3. Jérémy Barbay, Johannes Fischer, and Gonzalo Navarro. LRM-trees: Compressed indices, adaptive
sorting, and compressed permutations. ELSEVIER Theoretical Computer Science (TCS), 459:26�
41, 2012.

4. Jérémy Barbay. From time to space: Fast algorithms that yield small and fast data structures.
In Andrej Brodnik, Alejandro López-Ortiz, Venkatesh Raman, and Alfredo Viola, editors, Space-
E�cient Data Structures, Streams, and Algorithms (IanFest), volume 8066 of Lecture Notes in
Computer Science, pages 97�111. Springer, 2013.

5. J. Ian Munro and Venkatesh Raman. Succinct representation of balanced parentheses, static trees
and planar graphs. In IEEE Symposium on Foundations of Computer Science, pages 118�126,
1997.

6. Vladimir Estivill-Castro and Derick Wood. A survey of adaptive sorting algorithms. ACM Com-
puting Surveys, 24(4):441�476, 1992.

7. Alistair Mo�at and Ola Petersson. An overview of adaptive sorting. Australian Computer Journal,
24(2):70�77, 1992.

8. Christos Levcopoulos and Ola Petersson. Sorting shu�ed monotone sequences. In Proceedings
of the Scandinavian Workshop on Algorithm Theory (SWAT), pages 181�191, London, UK, 1990.
Springer-Verlag.

9. Christos Levcopoulos and Ola Petersson. Sorting shu�ed monotone sequences. Inf. Comput.,
112(1):37�50, 1994.

10. Jérémy Barbay, Francisco Claude, Travis Gagie, Gonzalo Navarro, and Yakov Nekrich. E�cient
fully-compressed sequence representations. Algorithmica, 69(1):232�268, 2014.

11. Harold N. Gabow, Jon Louis Bentley, and Robert Endre Tarjan. Scaling and related techniques
for geometry problems. In Proc. STOC, pages 135�143. ACM Press, 1984.

12. P. Elias. Universal codeword sets and representations of the integers. Information Theory, IEEE
Transactions on, 21(2):194�203, 1975.

13. J. Ian Munro and Philip M. Spira. Sorting and searching in multisets. SIAM Journal of Compu-
tation, 5(1):1�8, 1976.

	Succinct and Compressed Data Structures for Permutations and Integer Functions

