
Adaptive Computation of the Swap-Insert
String-to-String Correction Distance
Jérémy Barbay1 and Pablo Pérez-Lantero2

1 Departamento de Ciencia de la Computación, DCC
Universidad de Chile, Chile.
jeremy@barbay.cl

2 Escuela de Ingeniería Civil en Informática
Universidad de Valparaíso, Chile.
pablo.perez@uv.cl

Abstract
The Swap-Insert String-to-String Correction distance from a string S to another string L on
the alphabet [1..d] is the minimum number of insertions and swaps of pairs of adjacent symbols
converting S into L. In 1975, Wagner proved that its computation is NP-hard for unbounded
alphabet size d. In 2014, Meister described a polynomial solution for bounded alphabet size,
without giving its exact complexity.

We describe a dynamic program computing this distance in time polynomial in the size of the
strings, within O

(
d(n+m) + d2n

(∑d
α=1(mα − gα)

)(∏d
β=2(gβ + 1)

))
, when for each symbol

α ∈ [1..d] there are nα instances of α in S, mα instances of α in L, and where the vector of
values gα = min{nα,mα − nα} measures the difficulty to compute the distance between S and
L. This is within O

(
d(n+m) + (d/(d− 1)d−2) · nd(m− n)

)
in the worst case over instances of

fixed lengths n and m for S and L, which simplifies to within O
(
nd(m− n) + n+m

)
when d is

fixed.
Our solution is simpler than previous ones, which allows us to explicitly give its polynomial

complexity (as opposed to previous results). Moreover, our results show adaptivity to the easier
cases where, separately for each symbol α ∈ [1..d], mostly swaps are required (e.g. mα − nα is
small) or mostly insertions are required (e.g. nα is small), two cases of figure ignored by previous
results.

1998 ACM Subject Classification F.4.2 Grammars and Other Rewriting Systems (D.3.1), I.2.7
Natural Language Processing,

Keywords and phrases Adaptive Analysis, Dynamic Programming, Insert-Swap String-to-String
Correction distance

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

Given two strings S and L on the alphabet Σ = [1..d] and a list of correction operations on
strings, the String-to-String Correction distance is the minimum number of opera-
tions required to transform the string S into the string L. Introduced in 1974 by Wagner
and Fischer [7], this concept has many applications, from suggesting corrections for typing
mistakes, to decomposing the changes between two consecutive versions into a minimum
number of correction steps, for example within a control version system.

Each distinct set of correction operators yields a distinct correction distance on strings.
For instance, Wagner and Fischer [7] showed that for the three following operations, the

© J. Barbay and P. Pérez-Lantero;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 1–12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Adaptive Computation of the Swap-Insert String-to-String Correction Distance

insertion of a symbol at some arbitrary position, the deletion of a symbol at some
arbitrary position, and the substitution of a symbol at some arbitrary position, there is a
dynamic program solving this problem in time within O(nm) when S is of length n and L of
length m. Similar complexity results, all polynomial, hold for many other different subsets
of the natural correction operators, with one striking exception: Wagner [6] proved that
computing the Swap-Insert String-to-String Correction distance, i.e. the correction
distance when restricted to the operators insertion and swap (or, by symmetry, to the
operators deletion and swap), is NP-hard.

Let δ(S,L) be the Swap-Insert String-To-String Correction distance from S to
L. This distance is infinite when L is unreachable from S, that is, when some symbol α ∈ Σ
occurs more times in S than in L. Spreen [5] observed in 2013 that Wagner’s reduction [6]
from the Minimum Set Cover problem [3] supposed an infinite alphabet, and conjectured
that bounding the size of the alphabet would yield a solution running in polynomial time.
One year later, Meister [4] proved Spreen’s conjecture by describing an algorithm computing
δ(S,L) in time polynomial in the input size when S and L are strings on a finite alphabet.

While Meister [4] closed the question of whether δ(S,L) could be computed in polynomial
time, his algorithm is complex and its analysis does not yield an explicit formula for its
complexity: the polynomial complexity is proved by induction. Furthermore, the algorithm
does not take advantage of cases where the distance can be computed in linear time, such as
when only swaps are involved (i.e. S and L have the same lengths), or when many symbols
α ∈ Σ present in L are absent from S (mostly insertions are involved).

We describe in Section 3 a dynamic program to compute the Swap-Insert String-To-
String Correction distance δ(S,L) in time polynomial in n and m (but exponential in
d), which takes advantage of cases where, separately for each symbol α ∈ Σ, mostly swaps
are required (e.g. mα−nα is small) or mostly insertions are required (e.g. nα is small), a
condition measured separately for each symbol by the parameter gα = min{nα,mα − nα},
and globally by the parameter g = maxα∈Σ gα.

Our solution is simpler than the one described by Meister [4] and yields an explicit ana-
lysis of the complexity, in the worst case over instances with fixed d, n1, . . . , nd,m1, . . . ,md.
In turn, this analysis yields an explicit computational analysis in the worst case over in-
stances over strings of sizes n and m, which in turn yields an explicit computational analysis
in the worst case over instances with fixed input size n+m.

More formally, we show (see Theorem 6) that the dynamic program described computes
the Swap-Insert String-To-String Correction distance δ(S,L) in time within

O

d(n+m) + d2n ·

(
d∑

α=1
(mα − gα)

)
·

 d∏
β=2

(gβ + 1)

⊆ O

(
d(n+m) + (d/(d− 1)d−2) · nd(m− n)

)
⊆ O

(
(n+m) + nd(m− n)

)
when d is fixed.

This complexity is not only explicitly polynomial in n and m, it also shows that it is possible
to take advantage of “easy” instances where for each symbol there are few insertions or
swaps, which results in a running time within O(d2gd−1nm) in the worst case for d, n, n
and g fixed. We further show (Corollary 7) that in the worst case over instances with
d, n and m fixed, the above running time is within both O(n + m + nd(m − n)) and
O(n+m+ n2(m− n)d−1).

J. Barbay and P. Pérez-Lantero 3

2 Previous Work

In 1974, motivated by application to correct typing and transmission errors, Wagner and
Fischer [7] introduced the String-to-String Correction problem, which is to compute
the minimum number of corrections required to change the source string S into the target
string L. They considered the following operators:

the insertion of a symbol at some arbitrary position,
the deletion of a symbol at some arbitrary position, and
the substitution of a symbol at some arbitrary position.

They gave a dynamic program solving this problem in time within O(nm) when S is of
length n and L of length m. The worst case among instances of fixed input size n + m is
when n = m/2, which yields a complexity within O(n2).

In 1975, Wagner [6] and Lowrance and Wagner [8] extended the String-to-String
Correction problem (calling it the Extended String-to-String Correction prob-
lem), where one considers not only insertions, deletions, and substitution of symbols,
but also the swap of two contiguous symbols.

The Swap-Insert String-to-String Correction problem is the variant of the Ex-
tended String-to-String Correction problem when only insertions and swaps are
considered, and it is among the fifteen different variants of the Extended String-to-
String Correction problem that arise when considering a given subset of the four cor-
rection operators. Most of them can be computed in polynomial time [6, 7, 8], the only
exception being the Swap-Insert String-to-String Correction problem, and its sym-
metric variant where the operators are limited to deletion and swap: Wagner [6] proved the
NP-hardness of computing those, by reduction from the Minimum Set Cover problem [3].

In 2011, Abu-Khzam et al. [1] described an algorithm for the case where the operators are
limited to swaps and deletions. Their algorithm decides if the Swap-Deletion String-
to-String Correction distance from L to S is smaller than a parameter k, in time within
O(1.6181km). This directly yields an algorithm to decide if the Swap-Insert String-to-
String Correction distance is smaller than a parameter k within the same complexity,
as the Swap-Deletion String-to-String Correction distance from L to S is exactly
the Swap-Insert String-to-String Correction distance from S to L. Furthermore, it
indirectly yields an algorithms computing both distances in time within O(1.6181δ(S,L)m):
testing values of k from 0 to infinity in increasing order yields an algorithm computing the
distance in time within O(

∑δ(S,L)
k=0 1.6181k) ⊂ O(1.6181δ(S,L)m). Since any correct algorithm

must verify the correctness of its output, such algorithm implies the existence of an algorithm
with the same running time which outputs a minimum sequence of corrections from S to L.

In 2013, Spreen [5] observed that Wagner’s NP-hardness proof [6] was based on unboun-
ded alphabets (i.e. the Swap-Insert String-to-String Correction problem is NP-hard
when the size d of the alphabet is part of the input), and suggested that this problem might
be tractable for fixed alphabets. He described some polynomial-time algorithms for various
special cases when d = 2, and described some more general properties (that we describe
further in Section 3.1).

In 2014, Meister [4] extended Spreen’s work [5] to an algorithm computing the Swap-
Insertion String-to-String Correction distance from a string S to another string L
on any fixed alphabet size d ≥ 2, in time polynomial in n and m. The algorithm is based
on the computation of partial colorings, and the analysis is involved, so much that Meister
does not explicitly give the complexity of the algorithm described, merely proving that the
complexity is polynomial by induction.

4 Adaptive Computation of the Swap-Insert String-to-String Correction Distance

3 Algorithm

For every string X ∈ {S,L}, let X[i] denote the ith symbol of X from left to right for every
i ∈ [1..|X|], and X[i..j] denote the substring of X from the ith symbol to the jth symbol
for every 1 ≤ i ≤ j ≤ |X|. For every j < i, X[i..j] denotes the empty string. Given any
symbol α ∈ Σ, let rank(X, i, α) denote the number of occurrences of the symbol α in the
string X[1..i], and select(X, k, α) denote the value j ∈ [1..|X|] such that the kth occurrence
of α in X is precisely at position j, if j exists. If j does not exist, then select(X, k, α) is
null.

3.1 Distance Properties
We list the following properties of the optimal transformation from a short string S of length
n to a larger string L of length m. These properties will be useful to prove the correctness
of the recursive computation of δ(S,L).

1. The number of insertions is always equal to m − n, thus δ(S,L) equals m − n plus the
minimum number of swaps.

2. The swap operations used in any optimal solution satisfy the following properties [5]:
two contiguous equal symbols cannot be swapped; each symbol is always swapped in
the same direction in the string; and if some symbol is moved from some position to
other one by performing swaps operations, then no symbol equal to it can be inserted
afterwards between these two positions.

3. There always exists an optimal transformation in which all swap operations are performed
before any insertion [1]. Therefore, we can see an optimal transformation from S to L,
consisting of s swaps and m − n insertions, as a mapping f (called transformation
mapping) from [1..n] to a n-cardinality subset {j1 < j2 < . . . < jn} ⊆ [1..m] such that
S[i] = L[f(i)] for all i ∈ [1..n]. The mapping f induces the string Sf = L[j1]L[j2] . . . L[jn]
obtained by permuting the symbols of S using precisely s swaps. Then, L is obtained
by inserting m− n symbols in the string Sf .

3.2 Variables
The algorithm maintains a counter for each symbol α ∈ Σ of how many symbols of S
were “swapped” to earlier positions in order to match a processed symbol of L. Let W =∏d
α=1[0..nα] denote the domain of such a vector of counters, and c = (c1, c2, . . . , cd) ∈W be

such a vector of counters, where cα denotes the counter for α ∈ Σ.
The algorithm computes the extension DIST (i, j, c) of the Swap-Insert String-to-

String Correction distance δ(S,L), defined for each integers i ∈ [1..n + 1] and j ∈
[1..m + 1], as the value of δ(S[i..n]c, L[j..m]), where S[i..n]c is the string obtained from
S[i..n] by removing (i.e. ignoring) for each α ∈ Σ the first cα occurrences of α from left to
right. Such an “ignored” symbol S[k] for any position k ∈ [i..n], means that a symbol have
been swapped with some symbol within S[1..i− 1] in a previous step of the algorithm.

Given this definition, δ(S,L) = DIST (1, 1, 0), where 0 denotes the vector (0, . . . , 0) ∈
W. Given i, j, and c, we have that DIST (i, j, c) < +∞ if and only if for each symbol
α ∈ Σ the number of considered α symbols in S[i..n] is at most the number of α symbols in
L[j..m], that is, count(S, i, α) − cα ≤ count(L, j, α) for all α ∈ Σ, where count(X, i, α) =
rank(X, |X|, α)− rank(|X|, i− 1, α) is the number of symbols α in the string X[i..|X|]. In
the following, we show how to compute DIST (i, j, c) recursively for every i, j, and c. For a

J. Barbay and P. Pérez-Lantero 5

given α ∈ Σ, let wα ∈ W be the vector whose all components are equal to zero except the
αth component that is equal to 1.

3.3 Invariants
The following lemma deals with the basic case where S[i..n] and S[j..m] start with the same
symbol, i.e. S[i] = S[j]: when the beginnings of both strings are the same, matching those
two symbols seems like an obvious choice in order to minimize the distance, but one must
be careful to check first if the first symbol from S[i..n] is not scheduled to be “swapped” to
an earlier position, in which case it must be ignored and skipped:

I Lemma 1. Given two strings S and L over the alphabet Σ, for any positions i ∈ [1..n] in
S and j ∈ [1..m] in L, for any vector of counters c = (c1, . . . , cd) ∈ W and for any symbol
α ∈ Σ,

S[i] = L[j] = α

cα = 0

}
=⇒ DIST (i, j, c) = DIST (i+ 1, j + 1, c).

Proof. Since cα = 0, no α symbol of S[i..n] has been ignored, and the symbol α = S[i] must
be considered. Let S′[1..n′] = S[i..n]c. Given that two equal symbols cannot be swapped, we
have two options to transform S′[1..n′] into L[j..m] with the minimum number of operations:
(1) transform S′[1..n′] into L[j + 1..m] with the minimum number of operations (matching
S′[1] with S[j]); or (2) transform S′[1..n′] into L[j + 1..m] with the minimum number of
operations and then insert an α symbol at the first position of the resulting S′[1..n′]. Then,
we have that DIST (i, j, c) = min {DIST (i+ 1, j + 1, c), DIST (i, j + 1, c) + 1} .

Note that the number I of insertions in DIST (i+ 1, j + 1, c) equals (m− j + 1)− n′,
whereas the number of insertions in DIST (i, j+1, c) equals I−1. Let DIST (i, j+1, c) =
sα + sα + (I − 1), where sα denotes the number of swaps in which the symbol α = S′[1]
participates, and sα denotes the number of swaps in which that symbol does not participate.
Let DIST (i+ 1, j + 1, c) = s+ I, where s denotes the total number of swaps.

Let f be the transformation mapping associated with DIST (i, j + 1, c), k = f(i), and
f ′ be the transformation mapping associated with DIST (i + 1, j + 1, c). Observe that f
maps [2..n′] to a subset of [j + 1..k − 1] ∪ [k + 1..m] and that S′[2..n′]f is obtained from
S′[2..n′] in sα swaps. Further, note that f ′ maps [2..n′] to a subset of [j + 1..m] and
that S′[2..n′]f ′ is obtained from S′[2..n′] in the (minimum) number s of swaps. Since
[j + 1..k − 1] ∪ [k + 1..m] ⊂ [j + 1..m], it holds s ≤ sα. Then, we have

DIST (i, j + 1, c) = sα + sα + (I − 1)
≥ sα + I − 1
≥ s+ I − 1
= DIST (i+ 1, j + 1, c)− 1, which implies the result. J

The second simplest case is when the first available symbol of S[i..n] is already matched
(through swaps) to a symbol from L[1..j − 1]. The following Lemma shows how to simply
skip such as symbol:

I Lemma 2. Given two strings S and L over the alphabet Σ, for any positions i ∈ [1..n]
in S and j ∈ [1..m] in L, and for any vector of counters c = (c1, . . . , cd) ∈ W and for any
symbol α ∈ Σ,

S[i] = L[j] = α

cα > 0

}
=⇒ DIST (i, j, c) = DIST (i+ 1, j, c− wα).

6 Adaptive Computation of the Swap-Insert String-to-String Correction Distance

Proof. Since cα > 0, the first cα symbols α of S[i..n] have been ignored, thus S[i] is ignored.
Then, DIST (i, j, c) must be equal to DIST (i+ 1, j, c− wα), case in which cα − 1 symbols
α of S[i+ 1..n] are ignored. J

The most important case is when the first symbols of S[i..n] and L[j..m] do not match:
the minimum “path” from S to L can then starts either by an insertion or a swap operation.

I Lemma 3. Given two strings S and L over the alphabet Σ, for any positions i ∈ [1..n] in
S and j ∈ [1..m] in L, and for any vector of counters c = (c1, . . . , cd) ∈ W, note α, β ∈ Σ
the symbols α = S[i] and β = L[j], r the position r = select(S, rank(S, i, β)+ cβ +1, β) in S
of the (cβ + 1)th symbol β of S[i..n], and ∆ the number ∆ =

∑d
θ=1 min{cθ, rank(S, r, θ)−

rank(S, i− 1, θ)} of symbols ignored in S[i..r].
If α 6= β and cα = 0, then DIST (i, j, c) = min{dins, dswaps}, where

dins =
{
DIST (i, j + 1, c) + 1 if cβ = 0
+∞ if cβ > 0

and

dswaps =
{

(r − i)−∆ +DIST (i, j + 1, c+ wβ) if r 6= 0
+∞ if r = 0.

Proof. Let S′[1..n′] = S[i..n]c. Given that α 6= β and cα = 0, we have two possibilities
for DIST (i, j, c): (1) transform S′[1..n′] into L[j + 1..m] with the minimum number of
operations, and after that insert a symbol β at the first position of the resulting S′[1..n′]; or
(2) swap the first symbol β in S′[2..n′] from left to right from its current position r′ to the
position 1 performing r′−1 swaps, and then transform the resulting S′[2..n′] into L[j+1..m]
with the minimum number of operations. Observe that the option (1) can be performed
if and only if there is no symbol β ignored in S[i..n] (see the property 2 of the optimal
solutions). If this is the case, then DIST (i, j, c) = DIST (i, j+ 1, c) + 1. The option (2) can
be used if and only if there is a non-ignored symbol β in S[i..n], where the first one form left
to right is precisely at position r = select(S, rank(S, i, β)+cβ+1, β). In such a case we have
that r′ = (r − i+ 1)−∆, where ∆ =

∑d
θ=1 min{cθ, rank(S, r, θ)− rank(S, i− i, θ)} is the

total number of ignored symbols in the string S[i..r]. Hence, the number of swaps counts to
r′ − 1 = (r − i)−∆. Then, the correctness of dins, dswaps, and the result follow. J

The two last lemmas deal with the cases where one string is completely processed. When
L has been completely processed, either the remaining symbols in S have all previously been
matched via swaps and the distance is null, or there is no sequence correcting S into L:

I Lemma 4. Given two strings S and L over the alphabet Σ, for any positions i ∈ [1..n+ 1]
in S and j ∈ [1..m] in L, for any vector of counters c = (c1, . . . , cd) ∈W,

DIST (i,m+ 1, c) =
{

0 if c1 + . . .+ cd = n− i+ 1 and
+∞ otherwise.

Proof. Note that DIST (i,m+ 1, c) is the minimum number of operations to transform the
string S[i..n] into the empty string L[m + 1..m]. This number is equal zero if and only if
all the n − i + 1 symbols of S[i..n] have been ignored, that is, c1 + . . . + cd = n − i + 1.
If not all the symbols have been ignored, then such a transformation does not exist, then
DIST (i,m+ 1, c) = +∞. J

J. Barbay and P. Pérez-Lantero 7

Algorithm DIST (i, j, c = (c1, . . . , cd))
1. if DIST (i, j, c) = +∞ then
2. return +∞
3. else if i = n+ 1 then
4. (* insertions *)
5. return m− j + 1
6. else if j = m+ 1 then
7. (* skip all symbols since they were ignored *)
8. return 0
9. else
10. α← S[i], β ← L[j]
11. if cα > 0 then
12. (* skip S[i], it was ignored *)
13. return DIST (i+ 1, j, c− wα)
14. else if α = β then
15. (* S[i] and L[j] match *)
16. return DIST (i+ 1, j + 1, c)
17. else
18. dins ←∞, dswaps ←∞
19. if cβ = 0 then
20. (* insert a β at index i *)
21. dins ← 1 +DIST (i, j + 1, c)
22. r ← select(S, rank(S, i, β) + cβ + 1, β)
23. if r 6= null then
24. ∆←

∑d
θ=1 min{cθ, rank(S, r, θ)− rank(S, i− 1, θ)}

25. (* swaps *)
26. dswaps ← (r − i)−∆ +DIST (i, j + 1, c+ wβ)
27. return min{dins, dswaps}

Figure 1 Informal algorithm to compute DIST (i, j, c): Lemma 4 and Lemma 5 guarantee the
correctness of lines 1 to 8; Lemma 2 guarantees the correctness of lines 11 to 13; Lemma 1 guarantees
the correctness of lines 14 to 16; and Lemma 3 guarantees the correctness of lines 18 to 27.

When S has been completely processed, there are only insertions left to perform: the
distance can be computed in constant time, and the list of corrections in linear time.

I Lemma 5. Given two strings S and L over the alphabet Σ, for any position j ∈ [1..m+ 1]
in L, and for any vector of counters c = (c1, . . . , cd) ∈W,

DIST (n+ 1, j, c) =
{
m− j + 1 if c = 0 and

+∞ otherwise.

Proof. Note that DIST (i,m+ 1, c) is the minimum number of operations to transform the
empty string S[n + 1..n] into the string L[j..m]. If c = 0, then DIST (n + 1, j, c) < +∞
and the transformation consists of only insertions which are m − j + 1. If c 6= 0, then
DIST (n+ 1, j, c) = +∞. J

8 Adaptive Computation of the Swap-Insert String-to-String Correction Distance

3.4 Complexity Analysis
Combining Lemmas 1 to 5, the value of DIST (1, 1, 0) can be computed recursively, as
shown in the algorithm of Figure 1. We analyze the formal complexity of this algorithm
in Theorem 6, in the finest model that we can define, taking into account the relation for
each symbol α ∈ Σ between the number nα of occurrences of α in S and the number mα of
occurrences of α in L.

I Theorem 6. Given two strings S and L over the alphabet Σ, for each symbol α ∈ Σ, note
nα the number of occurrences of α in S and mα the number of occurrences of m in L, their
sums n = n1 + · · ·+ nd and m = m1 + · · ·+md, and gα a measure gα = min{nα,mα − nα}
of how far nα is from mα/2. There is an algorithm computing the Swap-Insert String-
to-String Correction distance δ(S,L) in time within

O

d(n+m) + d2n

(
d∑

α=1
(mα − gα)

) d∏
β=2

(gβ + 1)

 .

Proof. Observe first that there is a reordering of Σ = [1..d] such that g1 ≤ g2 ≤ · · · ≤ gd.
Assuming that all symbols of Σ are used in L, i.e. m1, . . . ,md > 0, it implies that mα > gα
for every α ∈ Σ.

Note also that given any string X ∈ {S,L}, a simple 2-dimensional array using space
within O(d · |X|) can be computed in time within O(d · |X|) and supports queries such as
rank(X, i, α) and select(X, k, α) in constant time for every values of i ∈ [1..n], k ∈ [1..|X|],
and α ∈ Σ.

Consider the algorithm of Figure 1, and let i ∈ [1..n], j ∈ [1..m], and c = (c1, . . . , cd) be
parameters such that DIST (i, j, c) < +∞.

At least one of the c1, . . . , cd is equal to zero: in the first entry DIST (1, 1, 0) all the
counters c1, c2, . . . , cd are equal to zero, and any counter is incremented only at line 26, in
which another counter must be equal to zero because of the lines 11 and 14.

The number of insertions counted in line 21, in previous calls to the functionDIST (, ,)
in the recursion path from DIST (1, 1, 0) to DIST (i, j, c), is equal to j − i− (c1 + · · ·+ cd).
Let tα denote the number of such insertions for the symbol α ∈ Σ. Then, j = i + (c1 +
· · · + cd) + (t1 + · · · + td), and observe that cα ≤ nα, tα ≤ mα − nα, and cα + tα =
rank(L, j − 1, α)− rank(S, i− i, α) for all α ∈ Σ.

Using the above observations, we encode all entries DIST (i, j, c), for parameters i, j and
c such that DIST (i, j, c) < +∞, into the following table T of d + 2 dimensions, such that
T [p, i, k, r1, . . . , rd−1] = DIST (i, j, c = (c1, . . . , cd)) where

cp = 0,
(r1, . . . , rd−1) = (x1, . . . , xp−1, xp+1, . . . , xd),

xα =
{
cα if nα ≤ mα − nα
tα if mα − nα < nα

for every α ∈ Σ, and

k = (c1 + · · ·+ cd) + (t1 + · · ·+ td)− (r1 + · · ·+ rd−1).

Since p ∈ [1..d], i ∈ [1..n+ 1], k ∈ [0..
∑d
α=1(mα − gα)], and rα ∈ [0..gα] for every α > 1,

the table T can be as large as d×(n+1)×(
∑d
α=1(mα−gα)+1)×(g2+1)×· · ·×(gd+1). Using

a modified version of the algorithm of Figure 1, based on memoization 1 on the table T ,

1 This is not a typo: Cormen et al. [2] explain that memoization comes from memo, referring to the fact
that the technique consists in recording a value so that we can look it up later.

J. Barbay and P. Pérez-Lantero 9

the goal entry DIST (1, 1, 0) can be computed recursively, where each entry DIST (i, j, c) is
computed in (amortized) O(d) time. See Figure 2 for the complete algorithm. The running
time of this new algorithm includes the O(d(n + m)) time for processing each of S and L
for rank and select, and the time to compute DIST (1, 1, 0) which is within O(d) times the
number of cells of the table T . The time to compute DIST (1, 1, 0) is then within

O

(
d · d · (n+ 1) ·

(
d∑

α=1
(mα − gα) + 1

)
· (g2 + 1) · · · · · (gd + 1)

)

⊆ O

(
d2n ·

d∑
α=1

(mα − gα) · (g2 + 1) · · · · · (gd + 1)
)
.

The result thus follows. J

The result above, about the complexity in the worst case over instances with d, n1, . . . , nd,
m1, . . . ,md fixed, implies results in less precise models, such as in the worst case over
instances for d, n,m fixed:

I Corollary 7. Given two strings S and L over the alphabet Σ, for each symbol α ∈ Σ, note
nα the number of occurrences of α in S and mα the number of occurrences of m in L, their
sums n = n1 + · · ·+nd and m = m1 + · · ·+md, and gα a measure gα = min{nα,mα−nα} of
how far nα is from mα/2. The algorithm analyzed in Theorem 6 computes the Swap-Insert
String-to-String Correction distance δ(S,L) in time within

O

(
d(n+m) + d2n(m− n)

(
n

d− 1 + 1
)d−1

)
,

which is O
(
n+m+ nd(m− n)

)
for fixed d; and within

O

(
d(n+m) + d2n2

(
m− n
d− 1 + 1

)d−1
)
,

which is O
(
n+m+ n2(m− n)d−1) for fixed d.

Proof. We use the following claim: If a ≥ 1 and x ≤ y, then (a+ y)(x+ 1) ≤ (a+x)(y+ 1).
It can be proved as follows:

(a− 1)x ≤ (a− 1)y
ax+ y ≤ ay + x

ax+ y + a+ xy ≤ ay + x+ a+ xy

(a+ y)(x+ 1) ≤ (a+ x)(y + 1).

Let β ∈ [2..d] = Σ \ {1} be a symbol such that mβ − nβ < nβ , a =
∑d
α=1(mα − gα) −

(mβ − gβ) =
∑d
α=1(mα− gα)−nβ =

∑
α∈Σ\{β}(mα− gα) ≥ 1, and b =

∏
α∈Σ\{1,β}(gα + 1).

Note that:
d∑

α=1
(mα− gα) ·

d∏
α=2

(gα + 1) = (a+ nβ) · b · (mβ − nβ + 1) ≤ (a+mβ − nβ) · b · (nβ + 1),

which immediately implies

d∑
α=1

(mα − gα) ·
d∏

α=2
(gα + 1) ≤ (m− n)

d∏
α=2

(nα + 1).

10 Adaptive Computation of the Swap-Insert String-to-String Correction Distance

Then,

O

(
d2n ·

d∑
α=1

(mα − gα) ·
d∏

α=2
(gα + 1)

)
⊆ O

(
d2n(m− n) · (n2 + 1) · · · · · (nd + 1)

)
⊆ O

(
d2n(m− n) ·

(
n2 + · · ·+ nd

d− 1 + 1
)d−1

)

⊆ O

(
d2n(m− n) ·

(
n

d− 1 + 1
)d−1

)
.

Using similar arguments, we can prove that

d∑
α=1

(mα − gα) ·
d∏

α=2
(gα + 1) ≤ n

d∏
α=2

(mα − nα + 1)

which implies the second part of the result. J

4 Discussion

In 2014, Meister [4] described an algorithm computing the Swap-Insertion String-to-
String Correction distance from a string S ∈ [1..d]n to another string L ∈ [1..d]m on any
fixed alphabet size d ≥ 2, in time polynomial in n and m. We describe a simpler dynamic
program running in time within O(n + m + nd(m − n)) and O(n + m + n2(m − n)d−1)
for fixed alphabet size d, and even faster when for all symbols α ∈ Σ the number nα of
occurrences of α in S is either close to zero (i.e. most α symbols from L are placed in
S through insertions) or close to the number mα of occurrences of α in L (i.e. most
α symbols from L are matched to symbols in S through swaps). The exact running time
of our algorithm is within O

(
d(n+m) + d2n

(∑d
α=1(mα − gα)

)(∏d
β=2(gβ + 1)

))
, where

gα = min{nα,mα − nα}. This simplifies to within O(d2nmgd−1) where g = maxα∈Σ gα.

4.1 Implicit Results
The results from Theorem 6 imply further results, not quite important enough to figure in
a corollary, but important enough to be mentioned:

Weighted Operators Wagner and Fisher [7] considered variants where the cost cins of an
insertion and the cost cswap of an swap are distinct. In the Swap-Insert String-
to-String Correction problem, there are always n − m insertions, and always
δ(S,L) − n + m swaps, which implies the optimality of the algorithm we described in
such variants.

Computing the Sequence of Corrections Since any correct algorithm must verify the cor-
rectness of its output, given a set C of correction operators, any correct algorithm com-
puting the String-to-String Correction Distance when limited to the operators
in C implies an algorithm computing a minimal sequence of corrections under the same
constraints within the same asymptotic running time.

Implied improvements when only swaps are needed Abu-Khzam et al. [1] mention an al-
gorithm computing the Swap String-to-String Correction distance (i.e. only
swaps are allowed) in time within O(n2). This is a particular case of the Swap-Insert
String-to-String Correction distance, which happens exactly when the two strings
are of the same size n = m (and no insertion is neither required nor allowed). In this

J. Barbay and P. Pérez-Lantero 11

particular case, our algorithm yields a solution running in time within O(d(n + m)),
hence improving on Abu-Khzam et al.’s solution [1].

Large Alphabet Let d′ be the number of symbols α of Σ = [1..d] such that the number of
occurrences of α in S is a constant fraction of the number of occurrences of α in L (i.e.
nα ∈ Θ(mα)). Our results imply that the real difficulty is d′ rather than d, i.e. that even
for a large alphabet size d the distance can still be computed in reasonable time if d is
finite.

4.2 Perspectives
Those results suggest various directions for future research:
Further improvements of the algorithm: our algorithm can be improved further using a

lazy evaluation of the min operator on line 27, so that the computation in the second
branch of the execution stops any time the computed distance becomes larger than the
distance computed in the first branch. This would save time in practice, but it would not
improve the worst-case complexity in the worst case, in which both branches are fully
explored.

Further improvements of the analysis: The complexity of Abu-Khzam et al.’s algorithm [1],
sensitive to the distance from S to L, is an orthogonal result to ours. An algorithm sim-
ulating both Abu-Khzam et al.’s algorithm and ours in parallel yields a solution adaptive
to both measures, but there should be a more clever solution and analysis.

Adaptivity for other existing distances: Can other String-to-String Correction dis-
tances be computed faster when the number of occurrences of symbols in both strings
are similar for most symbols? Some cases are easy (e.g. when only insertions or only
deletions are allowed), and some others require further work.

References
1 F. N. Abu-Khzam, H. Fernau, M. A. Langston, S. Lee-Cultura, and U. Stege. Charge and

reduce: A fixed-parameter algorithm for string-to-string correction. Discrete Optimization
(DO), 8(1):41 – 49, 2011.

2 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

3 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

4 D. Meister. Using swaps and deletes to make strings match. Technical report, Fachbereich
IV, Universität Trier, 2014.

5 T. D. Spreen. The binary string-to-string correction problem. Master’s thesis, University
of Victoria, Canada, 2013.

6 R. A. Wagner. On the complexity of the extended string-to-string correction problem. In
Proceedings of the seventh annual ACM Symposium on Theory Of Computing (STOC),
pages 218–223. ACM, 1975.

7 R. A. Wagner and M. J. Fischer. The string-to-string correction problem. Journal of the
ACM (JACM), 21(1):168–173, 1974.

8 R. A. Wagner and R. Lowrance. An extension of the string-to-string correction problem.
Journal of the ACM (JACM), 22(2):177–183, 1975.

12 Adaptive Computation of the Swap-Insert String-to-String Correction Distance

Algorithm Compute δ(S,L):
1. preprocess each of S and L for rank and select
2. if DIST (1, 1, 0) = +∞ then
3. return +∞
4. else
5. return DIST (1, 1, 0)

Algorithm DIST (i, j, c = (c1, . . . , cd)):
1. p← the first index in [1..d] so that cp = 0
2. for α = 1 to d do
3. if nα ≤ mα − nα then
4. xα ← ci
5. else
6. xα ← rank(L, j − 1, α)− rank(S, i− 1, α)− ci
7. (r1, . . . , rd−1)← (x1, . . . , xp−1, xp+1, . . . , xd)
8. k ← j − i− (r1 + · · ·+ rd−1)
9. if T [p, i, k, r1, . . . , rd−1] 6= undefined then
10. return T [t, i, k, r1, . . . , rd−1]
11. else
12. if i = n+ 1 then
13. T [p, i, k, r1, . . . , rd−1]← m− j + 1
14. else if j = m+ 1 then
15. T [p, i, k, r1, . . . , rd−1]← 0
16. else
17. α← S[i], β ← L[j]
18. if cα > 0 then
19. T [p, i, k, r1, . . . , rd−1]← DIST (i+ 1, j, c− wα)
20. else if α = β then
21. T [p, i, k, r1, . . . , rd−1]← DIST (i+ 1, j + 1, c)
22. else
23. dins ←∞, dswaps ←∞
24. if cβ = 0 and count(S, i, β) < count(L, j, β) then
25. dins ← 1 +DIST (i, j + 1, c)
26. r ← select(S, rank(S, i, β) + cβ + 1, β)
27. if r 6= null then
28. ∆←

∑d
θ=1 min{cθ, rank(S, r, θ)− rank(S, i− 1, θ)}

29. dswaps ← (r − i)−∆ +DIST (i, j + 1, c+ wβ)
30. T [p, i, k, r1, . . . , rd−1]← min{dins, dswaps}
31. return T [p, i, k, r1, . . . , rd−1]

Figure 2 Formal Algorithm to compute DIST (i, j, 0), using dynamic programming with memo-
ization1. Note that the line 24 from the algorithm Compute and line 2 from the algorithm DIST
guarantee that DIST (i, j, c) < ∞ in every call.

	Introduction
	Previous Work
	Algorithm
	Distance Properties
	Variables
	Invariants
	Complexity Analysis

	Discussion
	Implicit Results
	Perspectives

