
A

Instance-Optimal Geometric Algorithms

PEYMAN AFSHANI, MADALGO, University of Aarhus

JÉRÉMY BARBAY, DCC, Universidad de Chile

TIMOTHY M. CHAN, CSCS, University of Waterloo

We prove the existence of an algorithm A for computing 2-d or 3-d convex hulls that is optimal for every

point set in the following sense: for every sequence S of n points and for every algorithm A′ in a certain
class A, the maximum running time of A on input S is at most a constant factor times the running time
of A′ on the worst possible permutation of S for A′. In fact, we can establish a stronger property: for
every sequence S of points and every algorithm A′, the maximum running time of algorithm A is at most a
constant factor times the average running time of A′ over all permutations of S. We call algorithms satisfying
these properties instance-optimal in the order-oblivious and random-order setting. Such instance-optimal
algorithms simultaneously subsume output-sensitive algorithms and distribution-dependent average-case

algorithms, and all algorithms that do not take advantage of the order of the input or that assume the input
is given in a random order.

The class A under consideration consists of all algorithms in a decision tree model where the tests
involve only multilinear functions with a constant number of arguments. To establish an instance-specific
lower bound, we deviate from traditional Ben–Or-style proofs and adopt an interesting adversary argument.
For 2-d convex hulls, we prove that a version of the well known algorithm by Kirkpatrick and Seidel (1986)
or Chan, Snoeyink, and Yap (1995) already attains this lower bound. For 3-d convex hulls, we propose a
new algorithm.

We further obtain instance-optimal results for a few other standard problems in computational geometry,
such as maxima in 2-d and 3-d, orthogonal line segment intersection in 2-d, finding bichromatic L∞-close
pairs in 2-d, off-line orthogonal range searching in 2-d, off-line dominance reporting in 2-d and 3-d, off-line
halfspace range reporting in 2-d and 3-d, and off-line point location in 2-d.

Categories and Subject Descriptors: F.2.2 [Analysis Of Algorithms And Problem Complexity]: Nonnu-
merical Algorithms and Problems—Geometrical problems and computations

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Adaptive Algorithms, Computational Geometry, Convex Hull,Instance
Optimality, Maximal, Output Sensitivity, Partition Trees.

ACM Reference Format:

Peyman Afshani, Jérémy Barbay and Timothy M. Chan. 2014. Instance-Optimal Geometric Algorithms. J.

ACM V, N, Article A (January YYYY), 32 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

This work is supported by the project FONDECYT REGULAR no 1120054.
Author’s addresses: Peyman Afshani (peyman@madalgo.au.dk), Center for MAssive Data ALGOrithmics
(MADALGO), University of Aarhus, Aarhus, Denmark; Jérémy Barbay (jbarbay@dcc.uchile.cl, Departa-
mento de Ciencias de la Computación (DCC), Universidad de Chile, Santiago, Chile; Timothy M. Chan
(tmchan@uwaterloo.ca), Cheriton School of Computer Science (CSCS), University of Waterloo, Waterloo,
Canada.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 0004-5411/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 P. Afshani et al.

1. INTRODUCTION

Instance optimality: our model(s). Standard worst-case analysis of algorithms has
often been criticized as overly pessimistic. As a remedy, some researchers have turned
towards adaptive analysis where the execution cost of algorithms is measured as a
function of not just the input size but other parameters that capture in some ways the
difficulty of the input instance. For example, for problems in computational geometry
(the primary domain of the present paper), parameters that have been considered in
the past include the output size (leading to so-called output-sensitive algorithms) [Kirk-
patrick and Seidel 1986], the spread of an input point set (the ratio of the maximum
to the minimum pairwise distance) [Erickson 2005], various measures of fatness of the
input objects (e.g., ratio of circumradii to inradii) [Matousek et al. 1994] or cluttered-
ness of a collection of objects [de Berg et al. 2002], the number of reflex angles in an
input polygon, and so on.

The ultimate in adaptive algorithms is an instance-optimal algorithm, i.e., an algo-
rithm A whose cost is at most a constant factor from the cost of any other algorithm A′

running on the same input, for every input instance. Unfortunately, for many problems,
this requirement is too stringent. For example, consider the 2-d convex hull problem,
which has Θ(n logn) worst-case complexity in the algebraic computation tree model:
for every input sequence of n points, one can easily design an algorithm A′ (with its
code depending on the input sequence) that runs in O(n) time on that particular se-
quence, thus ruling out the existence of an instance-optimal algorithm.1

To get a more useful definition, we suggest a variant of instance optimality where we
ignore the order in which the input elements are given, as formalized precisely below:

Definition 1.1. Consider a problem where the input consists of a sequence of n
elements from a domain D. Consider a class A of algorithms. A correct algorithm refers
to an algorithm that outputs a correct answer for every possible sequence of elements
in D.

For a set S of n elements in D, let TA(S) denote the maximum running time of A
on input σ over all n! possible permutations σ of S. Let OPT(S) denote the minimum
of TA′(S) over all correct algorithms A′ ∈ A. If A ∈ A is a correct algorithm such
that TA(S) ≤ O(1) · OPT(S) for every set S, then we say A is instance-optimal in the
order-oblivious setting.

For many problems, the output is a function of the input as a set rather than a
sequence, and the above definition is especially meaningful. In particular, for such
problems, instance-optimal algorithms are automatically optimal output-sensitive al-
gorithms; in fact, they are automatically optimal adaptive algorithms with respect to
any parameter that is independent of the input order, all at the same time! This prop-
erty is satisfied by simple parameters like the spread of an input point set S, or more
complicated quantities like the expected size fr(S) of the convex hull of a random sam-
ple of size r from S [Clarkson 1994].

For many algorithms (e.g., quickhull [Preparata and Shamos 1985], to name one),
the running time is not affected so much by the order in which the input points are
given but by the relative positions of the input points. Combinatorial and computa-
tional geometers more often associate “bad examples” with bad point sets rather than

1The length of the program for A′ may depend on n in this example. If we relax the definition to permit the
“constant factor” to grow as a function of the program length of A′, then an instance-optimal algorithm A
exists for many problems such as sorting (or more generally problems that admit linear-time verification).
This follows from a trick attributed to Jones [1997], of enumerating and simulating all programs in parallel
under an appropriate schedule. To say that algorithms obtained this way are impractical, however, would
be an understatement.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Instance-Optimal Geometric Algorithms A:3

bad point sequences. All this supports the reasonableness and importance of the order-
oblivious form of instance optimality.

We can consider a still stronger variant of instance optimality:

Definition 1.2. For a set S of n elements in D, let T avg
A (S) denote the average run-

ning time of A on input σ over all n! possible permutations σ of S. Let OPTavg(S)
denote the minimum of T avg

A′ (S) over all correct algorithms A′ ∈ A. If A ∈ A is a cor-
rect algorithm such that TA(S) ≤ O(1) · OPTavg(S) for every set S, then we say A is
instance-optimal in the random-order setting.2

Note that an instance-optimal algorithm in the above sense is immediately also com-
petitive against randomized (Las Vegas) algorithms A′, by the easy direction of Yao’s
principle. The above definition has extra appeal in computational geometry, as it is
common to see the design of randomized algorithms where the input elements are
initially permuted in random order [Clarkson and Shor 1989].

Instance-optimal algorithms in the random-order setting also imply optimal
average-case algorithms where we analyze the expected running time under the as-
sumption that the input elements are random and independently chosen from a com-
mon given probability distribution. (To see this, just observe that the input sequence is
equally likely to be any permutation of S conditioned to the event that the set of n in-
put elements equals any fixed set S.) An instance-optimal algorithm can deal with all
probability distributions at the same time! Instance optimality also remedies a com-
mon complaint about average-case analysis, that it does not provide information about
an algorithm’s performance on a specific input.

Convex hull: our main result. After making the case for instance-optimal algorithms
under our definitions, the question remains: do such algorithms actually exist, or are
they “too good to be true”? Specifically, we turn to one of the most fundamental and well
known problems in computational geometry—computing the convex hull of a set of n
points. Many O(n logn)-time algorithms in 2-d and 3-d have been proposed since the
1970s [de Berg et al. 1997; Edelsbrunner 1987; Preparata and Shamos 1985], which
are worst-case optimal under the algebraic computation tree model. Optimal output-
sensitive algorithms can solve the 2-d and 3-d problem in O(n log h) time, where h is
the output size. The first such output-sensitive algorithm in 2-d was found by Kirk-
patrick and Seidel [1986] in the 1980s and was later simplified by Chan et al. [1997]
and independently Wenger [1997]; a different, simple, optimal output-sensitive algo-
rithm was discovered by Chan [1996b]. The first optimal output-sensitive algorithm in
3-d was obtained by Clarkson and Shor [1989] using randomization; another version
was described by Clarkson [1994]. The first deterministic optimal output-sensitive al-
gorithm in 3-d was obtained by Chazelle and Matoušek [1995] via derandomization;
the approach by Chan [1996b] can also be extended to 3-d and yields a simpler op-
timal output-sensitive algorithm. There are also average-case algorithms that run in
O(n) expected time for certain probability distributions [Preparata and Shamos 1985],
e.g., when the points are independent and uniformly distributed inside a circle or a
constant-size polygon in 2-d, or a ball or a constant-size polyhedron in 3-d.

The convex hull problem is in some ways an ideal candidate to consider in our mod-
els. It is not difficult to think of examples of “easy” point sets and “hard” point sets
(see Figure 1(a,b)). It is not difficult to think of different heuristics for pruning non-
extreme points, which may not necessarily improve worst-case complexity but may

2One can also consider other variations of the definition, e.g., relaxing the condition to T avg

A
(S) ≤ O(1) ·

OPTavg(S), or replacing expected running time over random permutations with analogous high-probability
statements.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 P. Afshani et al.

q1

q2 q3

(a)

q1

q2 q3

(b)

q1
q2

q3

(c)

q1
q2

q3

(d)

Fig. 1. Examples of instances for the problems of Upper Hull (a and b) and Maxima (c and d). Instances
where all the internal points are concentrated in one “cell” (b and d) have cost OPT ∈ Θ(n) while instances
which internal points are distributed more or less uniformly (a and c) have cost OPT ∈ Θ(n log h). Note also
the vertical partitions in each instance: two instances with the same vertical distribution of the internal
points H(Πvert) can be very different in difficulty, as measured by H(S).

help for many point sets encountered “in practice” (e.g., consider quickhull [Preparata
and Shamos 1985]). However, it is unclear whether there is a single pruning strategy
that works best on all point sets.

In this paper, we show that there are indeed instance-optimal algorithms for both the
2-d and 3-d convex hull problem, in the order-oblivious or the stronger random-order
setting. Our algorithms thus subsume all the previous output-sensitive and average-
case algorithms simultaneously, and are provably at least as good asymptotically as
any other algorithm for every point set, so long as input order is ignored.

Techniques. We believe that our techniques—for both the upper-bound side (i.e., al-
gorithms) and the lower-bound side (i.e., proofs of their instance optimality)—are as
interesting as our results.

On the upper-bound side, we find that in the 2-d case, a new algorithm is not nec-
essary: a version of Kirkpatrick and Seidel’s output-sensitive algorithm, or its simpli-
fication by Chan, Snoeyink, and Yap, is instance-optimal in the order-oblivious and
random-order setting. We view this as a plus: these algorithms are simple and prac-
tical to implement [Bhattacharya and Sen 1997], and our analysis sheds new light
into their theoretical complexity. In particular, our result immediately implies that a
version of Kirkpatrick and Seidel’s algorithm runs in O(n) expected time for points
uniformly distributed inside a circle or a fixed-size polygon—we were unaware of this
fact before. (Interestingly, Kirkpatrick and Seidel’s paper is titled “The ultimate planar
convex hull algorithm?”; our result gives a positive answer to the title question in the
order-oblivious and random-order model.)

In 3-d we propose a new algorithm, as none of the previous output-sensitive
algorithms seem to be instance-optimal (e.g., known 3-d generalizations of the
Kirkpatrick–Seidel algorithm have suboptimal O(n log2 h) running time [Chan et al.
1997; Edelsbrunner and Shi 1990], while a straightforward implementation of Chan’s
algorithm [Chan 1996b] fails to be instance-optimal even in 2-d). Our algorithm builds
on Chan’s technique [Chan 1996b] but requires additional ideas, notably the use of
partition trees [de Berg et al. 1997; Matoušek 1992].

The lower-bound side requires more innovation. We are aware of three existing tech-
niques for proving worst-case Ω(n logn) (or output-sensitive Ω(n log h)) lower bounds in
computational geometry: (i) information-theoretical or counting arguments, (ii) topo-
logical arguments, from early work by Yao [1981] to Ben-Or’s theorem [Ben-Or 1983],
and (iii) Ramsey-theory-based arguments, by Moran et al. [1985]. Ben-Or’s approach
is perhaps the most powerful and works in the general algebraic computation tree
model, whereas Moran et al.’s approach works for a decision tree model in which all
the test functions have a bounded number of arguments. For an arbitrary input set S
for the convex hull problem, the naive information-theoretical argument gives only an

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Instance-Optimal Geometric Algorithms A:5

Ω(h logh) lower bound on OPT(S). On the other hand, topological and Ramsey-theory
approaches seem unable to give any instance-specific lower bound at all (e.g., modi-
fying the topological approach is already nontrivial if we just want a lower bound for
some integer input set [Yao 1991], let alone for every input set, whereas the Ramsey-
theory approach considers only input elements that come from a cleverly designed
subdomain).

We end up using a different lower bound technique which is inspired by an adversary
argument originally used to prove time–space lower bounds for median finding [Chan
2009]. Note that this approach can lead to another proof of the standard Ω(n logn)
lower bounds for many geometric problems including the problem of computing a con-
vex hull; the proof is simple and works in any algebraic decision tree model where the
test functions have at most constant degree and have at most a constant number of
arguments. We build on the idea further and obtain an optimal lower bound for the
convex hull problem for every input point set. The assumed model is more restrictive:
the class A of allowed algorithms consists of those under a decision tree model in which
the test functions are multilinear and have at most a constant number of arguments.
Fortunately, most standard primitive operations encountered in existing convex hull
algorithms satisfy the multilinearity condition (e.g., the standard determinant test
does). The final proof involves partition trees [de Berg et al. 1997; Matoušek 1992],
which are more typically used in algorithms (as in our new 3-d algorithm) rather than
in lower-bound proofs.

So, what is OPT(S), i.e., what parameter truly captures the difficulty of a point set
S, asymptotically, for the convex hull problem? As it turns out, the bound has a sim-
ple expression (to be revealed in Section 3) and shares similarity with entropy bounds
found in average-case (also called “expected-case”) analysis of geometric data struc-
tures where query points come from a given probability distribution—these entropy-
based results have been the subject of several previous pieces of work [Arya et al.
2007a; Arya et al. 2007b; Collette et al. 2008; Dujmović et al. 2009; Iacono 2004]. How-
ever, lower bounds for expected-case data structures cannot be applied to our problem
because our problem is off-line (lower bounds for on-line query problems usually as-
sume that the query algorithms fit a “classification tree” framework, but an off-line
algorithm may compare a query point not only with points from the data set but also
with other query points). Furthermore, although in the off-line setting we can think of
the query points as coming from a discrete point probability distribution, this distribu-
tion is not known in advance.3 Lastly, expected-case data structures achieve speedup
in querying but not preprocessing.

Other results. The computation of the convex hull is just one problem for which
we are able to obtain instance optimality. We show that our techniques can lead to
instance-optimal results for many other standard problems in computational geome-
try, in the order-oblivious or random-order setting, including: (a) maxima in 2-d and
3-d, (b) reporting/counting intersection between horizontal and vertical line segments
in 2-d, (c) reporting/counting pairs of L∞-distance at most 1 between a red point set
and a blue point set in 2-d, (d) off-line orthogonal range reporting/counting in 2-d,
(e) off-line dominating reporting in 2-d and 3-d, (f) off-line halfspace range reporting
in 2-d and 3-d, and (g) off-line point location in 2-d.

Optimal expected-case, entropy-based data structures for the on-line version of (g)
are known [Arya et al. 2007b; Iacono 2004], but not for (e,f)—for example, Dujmović

3Self-improving algorithms [Ailon et al. 2006; Clarkson and Seshadhri 2008] also cope with the issue of how
to deal with unknown input probability distributions, but are not directly comparable with our results, since
in their setting each point can come from a different distribution, so input order matters.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 P. Afshani et al.

et al. [2009] only obtained results for 2-d dominance counting, a special case of 2-d
orthogonal range counting. Incidentally, as a consequence of our ideas, we can also get
new optimal expected-case data structures for on-line 2-d general orthogonal range
counting and 2-d and 3-d halfspace range reporting.

Related work. Although Fagin et al. [2003] first coined the term “instance optimal-
ity” (when studying the problem of finding items with the k top aggregate scores in a
database in a certain model), the concept has appeared before. For example, the well
known “dynamic optimality conjecture” is about instance optimality concerning algo-
rithms for manipulating binary search trees (see [Demaine et al. 2009] for the latest in
a series of papers). Demaine et al. [2000] studied the problem of computing the union
or intersection of k sorted sets and gave instance-optimal results for any k for union,
and for constant k for intersection, in the comparison model; Barbay and Chen [2008]
extended their result to the computation of convex hull of k convex polygons in 2-d.
Another work about instance-optimal geometric algorithms is by Baran and Demaine
[2005], who addressed an approximation problem about computing the distance of a
point to a curve under a certain black-box model. Other than these, there has not been
much work on instance optimality in computational geometry, especially concerning
the classical problems under conventional models.

The concept of instance optimality resembles competitive analysis of on-line algo-
rithms. In fact, in the on-line algorithms literature, our order-oblivious setting of in-
stance optimality is related to what Boyar and Favrholdt [2007] called the relative
worst order ratio, and our random-order setting is related to Kenyon’s random order
ratio [Kenyon 1996]. What makes instance optimality more intriguing is that we are
not bounding the objective function of an optimization problem but the cost of an algo-
rithm.

2. WARM-UP: 2-D MAXIMA

Before proving our main result on convex hull, we find it useful to study a simpler
problem: maxima in 2-d. For two points p and q we say p dominates q if each coordinate
of p is greater than that the corresponding coordinate of q. Given a set S of n points in
R

d, a point p is maximal if p ∈ S and p is not dominated by any other point in S. For
simplicity, we assume that the input is always nondegenerate throughout the paper.
The maxima problem is to report all maximal points, say, from left to right.

For an alternative formulation, we can define the orthant at a point p to be the region
of all points that are dominated by p. In 2-d, the boundary of the union of the orthants
at all p ∈ S forms a staircase, and the maxima problem is equivalent to computing the
staircase of S.

This problem has a similar history as the convex hull problem: many worst-case
O(n logn)-time algorithms are known, Kirkpatrick and Seidel’s output-sensitive al-
gorithm [Kirkpatrick and Seidel 1985] runs in O(n log h) time for output size h, and
average-case algorithms with O(n) expected time have been analyzed for various prob-
ability distributions [Bentley et al. 1990; Clarkson 1994; Preparata and Shamos 1985].
The problem is simpler than computing the convex hull, in the sense that direct pair-
wise comparisons are sufficient. We therefore work with the class A of algorithms in
the comparison model where we can access the input points only through comparisons
of the coordinate of an input point with the corresponding coordinate of another input
point. The number of comparisons made by an algorithm will act as a lower bound on
the running time.

We define a measure H(S) to represent the difficulty of a point set S and prove
that the optimal running time OPT(S) is precisely Θ(n(H(S) + 1)) for the 2-d maxima
problem in the order-oblivious and random-order setting.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Instance-Optimal Geometric Algorithms A:7

q1

q2

q3

q1

q2

q3

Fig. 2. Partition and Structural Entropy of an instance of 2d Maxima. On the left, a partition of entropy
H(1, 4, 7), smaller than the vertical partition on the right, of entropy H(4, 4, 4) = log2(3).

Definition 2.1. Consider a partition Π of the input set S into disjoint subsets
S1, . . . , St. We say that Π is respectful if each subset Sk is either a singleton or can
be enclosed by an axis-aligned box Bk whose interior is completely below the staircase
of S. Define H(Π) =

∑t
k=1(|Sk|/n) log(n/|Sk|) and let the structural entropy H(S) of S

to be the minimum of H(Π) over all respectful partitions Π of S.

Remark 2.2. Alternatively, we could further insist in the definition that the bound-
ing boxes Bi are nonoverlapping and cover precisely the staircase of S. However, this
will not matter, as it turns out that the two definitions yield asymptotically the same
quantity (this nonobvious fact is a byproduct of our lower bound proof in Section 2.2).
H(Π) is of course an entropy-like expression and is similar to bounds used in

expected-case geometric data structures for the case of a discrete point probability
distribution, although our definition itself is nonprobabilistic. A measure proposed by
Sen and Gupta [1999] is identical to H(Πvert) in which Πvert is a partition of S obtained
by dividing the point set S by h vertical lines at the h maximal points of S (see Fig-
ure 2 for an illustration). Note that H(Πvert) is at most log h (see Figure 1(c)) but can
be much smaller; in turn, H(S) can be much smaller than H(Πvert) (see Figures 1(d)
and 2). The complexity of the 1-d multiset sorting problem [Munro and Spira 1976]
also has a similar expression, but there each input multiset induces a unique partition
and so the situation is even simpler.

2.1. Upper bound

We use a slight variant of Kirkpatrick and Seidel’s output-sensitive maxima algo-
rithm [Kirkpatrick and Seidel 1985] (in their original algorithm, only points from Qℓ

are pruned in line 4):

maxima(Q):
1. If |Q| = 1 then return Q.
2. Divide Q into the left and right halves Qℓ and Qr by the median x-coordinate;
3. discover the point q with the maximum y-coordinate in Qr;
4. prune all points in Qℓ and Qr that are dominated by q;
5. return the concatenation of maxima(Qℓ) and maxima(Qr).

We call maxima(S) to start: Figure 3 illustrates the state of the algorithm after a
single recursion level. Kirkpatrick and Seidel showed that its running time is within
O(n log h), and Sen and Gupta [1999] improved this upper bound to O(n(H(Πvert)+ 1)).

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 P. Afshani et al.

q1

q2

q3

median

Fig. 3. Partial execution of maxima(S) af-
ter one recursion level. After finding the
median point, the algorithm found the
point q2 dominating it, and pruned the 6
points dominated by it. Only 5 points are
left to recurse upon, 1 to the left and 4 to
the right.

Improving this bound to O(n(H(Π) + 1)) for an arbitrary respectful partition Π of S
requires a bit more finesse:

THEOREM 2.3. The algorithm maxima runs in time within O(n(H(S) + 1)) on an
instance S of n points and of structural entropy H(S).

PROOF. Consider the recursion tree of the algorithm and let Xj denote the sublist
of all maximal points of S discovered during the first j recursion levels, in left-to-right
order. Let S(j) be the subset of S that survives recursion level j, i.e., the set of points
that have not been pruned during the first j recursion levels and nj := |S(j)|. Observe

that (i) there can be at most ⌈n/2j⌉ points of S(j) with x-coordinates between any two
consecutive points in Xj , and (ii) all points of S that are strictly below the staircase
of Xj have been pruned during levels 0, . . . , j of the recursion. The running time is

asymptotically bounded by
∑logn

j=0 nj .

Let Π be any respectful partition of S. Look at a subset Sk in Π. Let Bk be a box
enclosing Sk whose interior lies below the staircase of S. Fix a level j. Suppose the
upper-right corner of Bk has x-coordinate between two consecutive points qi and qi+1

in Xj. By (ii), the only points in Bk that can survive level j must have x-coordinates be-
tween qi and qi+1. Thus, by (i), the number of points in Sk that survive level j is at most
min

{
|Sk|, ⌈n/2j⌉

}
. Since the Sk ’s cover the entire point set, with a double summation

we have
logn∑

j=0

nj ≤
∑

k

log n∑

j=0

min
{
|Sk|, ⌈n/2j⌉

}

≤
∑

k

|Sk| log(n/|Sk|) + |Sk|+ |Sk|/2 + |Sk|/4 + · · ·

=
∑

k

|Sk| (log(n/|Sk|) + 2)

∈ O(n(H(Π) + 1)).

As Π can be any respectful partition of S, it can be in particular the one of minimum
entropy, hence the final result.

2.2. Lower bound

For the lower-bound side, we first provide an intuitive justification for the bound nH(S)
and point out the subtlety in obtaining a rigorous proof. Intuitively, to certify that we
have a correct answer, the algorithm must gather evidence for each point p eliminated

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Instance-Optimal Geometric Algorithms A:9

q1

q2

q3

q1

q2

q3

Fig. 4. The difficulty of proving a lower bound by counting certificates: each elimination of a point p must
be justified by indicating a witness which dominates p. But there can be more than one such certificate for
each instance, and some can be encoded in less space than others.

why it is not a maximal point, by indicating at least one witness point in S which
dominates p. We can define a partition Π by placing points with a common witness
in the same subset. It is easy to see that this partition Π is respectful. The entropy
bound nH(Π) roughly presents the number of bits required to encode the partition Π,
so in a vague sense, nH(S) represents the length of the shortest “certificate” for S.
Unfortunately, there could be many valid certificates for a given input set S (due to
possibly multiple choices of witnesses for each nonmaximal point, see Figure 4 for an
illustration). If hypothetically all branches of an algorithm lead to a common partition
Π, then a straightforward information-theoretic or counting argument would indeed
prove the lower bound. The problem is that each leaf of the decision tree may give rise
to a different partition Π.

In Appendix A, we show that despite the aforementioned difficulty, it is possible to
obtain a proof of instance optimality via this approach, but the proof requires a more
sophisticated counting argument, and also works with a different definition of H(S).
Moreover, it is limited specifically to the 2-d maxima problem and does not extend to
3-d maxima, let alone to nonorthgonal problems like convex hull.

In this subsection, we describe a different proof, which generalizes to the other prob-
lems that we consider. The proof is based on an interesting and simple adversary ar-
gument. We show in Section 4.1 how to modify the proof in the random-order setting.

THEOREM 2.4. OPT(S) ∈ Ω(n(H(S) + 1)) for the 2-d maxima problem in the com-
parison model.

PROOF. We prove that a specific respectful partition described below not only
asymptotically achieves the minimum entropy among all the respectful partitions,
but also provides a lower bound for the running time of any comparison based al-
gorithm that solves the 2-d maxima problem. The construction of the partition uses
k-d trees [de Berg et al. 1997] to define a tree T of axis-aligned boxes, generated top-
down as follows: The root stores the entire plane. For each node storing box B, if B is
strictly below the staircase of S, or if B contains just one point of S, then B is a leaf.
Otherwise, if the node is at an odd (resp. even) depth, divide B into two subboxes by
the median x-coordinate (resp. y-coordinate) among the points of S inside B. The two
subboxes are the children of B (see Figure 5 for an illustration). Note that each box at
depth j of T contains at least ⌊n/2j⌋ points of S.

Our claimed partition, denoted by Πkd-tree, is one formed by the leaf boxes in this tree
T (i.e., points in the same leaf box are placed in the same subset). Clearly, Πkd-tree is
respectful. We will prove that for any correct algorithm A in A, there exists a permu-
tation of S on which the algorithm requires at least Ω(nH(Πkd-tree)) comparisons.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 P. Afshani et al.

median

q1

q2

q3

Fig. 5. The beginning of the recursive partitioning of S by the kd-tree T , which will yield the final partition
Πkd-tree for the adversarial lower bound for the maxima problem in two dimension. The two bottom boxes
are already leaves, while the two top boxes will be divided further.

The adversary constructs a bad permutation for the input by simulating the algo-
rithm A and resolving each comparison so that to force the algorithm to perform many
others. During the simulation, we maintain a box Bp in T for each point p. If Bp is
a leaf, the algorithm knows the exact location of p inside Bp. But if Bp is an internal
node, the only information the algorithm knows about p is that p lies inside Bp. In
other words, p can be assigned any point in Bp without affecting the outcome of the
previous comparisons made.

For each box B in T , let n(B) be the number of points p such that the box Bp is
contained in B. We maintain the invariant that n(B) ≤ |S ∩ B|. If n(B) = |S ∩ B|, we
say that B is full. If Bp is a leaf we assign p to an arbitrary point in S ∩ Bp that has
previously not been assigned; we then call p a fixed point. The invariant ensures that
all the points inside a leaf can be fixed.

Assume that the algorithm A compares, say, the x-coordinates of two points p and
q. The main case is when neither Bp nor Bq is a leaf. In this case, the comparison is
simulated in the following way:

(1) If Bp (resp. Bq) is at even depth, we arbitrarily reset Bp (resp. Bq) to one of its
children that is not full. Thus assume that Bp and Bq are both at odd depths.
W.l.o.g., suppose that the median x-coordinate of Bp is less than the median x-
coordinate of Bq. We reset Bp to the left child B′

p of Bp and Bq to the right child B′
q

of Bq; if either B′
p or B′

q is full we go to step 2. Now, the knowledge that p and q lie
in B′

p and B′
q allows us to deduce that p has a smaller x-coordinate than q. Thus,

the adversary declares to the algorithm that the x-coordinate of p is smaller than
that of q and continues with the rest of the simulation.

(2) An exceptional case occurs if B′
p is full (or similarly B′

q is full). Here, we reset Bp in-
stead to the left (resp. right) sibling B′′

p of B′
p, but the comparison is not necessarily

resolved yet, so we go back to step 1.

Note that in both steps the invariant is maintained. This is because both Bp and B′
p

cannot be full: we have |S ∩ Bp| = |S ∩B′
p|+ |S ∩B′′

p | and since Bp is assigned to p we
have |S ∩Bp| ≥ n(Bp) ≥ n(B′

p) + n(B′′
p) + 1, which implies that either n(B′

p) < |S ∩B′
p|

or n(B′′
p) < |S ∩B′

p|.
It remains to handle the case when Bp or Bq is a leaf. Note that if both Bp and Bq

are leaves, then all the points inside them are fixed and p and q are assigned to specific

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Instance-Optimal Geometric Algorithms A:11

points within Bp and Bq, meaning that the comparison is already resolved. Otherwise,
w.l.o.g., assume Bp is a leaf. We follow step 1 except that now since p has been fixed,
we compare the actual x-coordinate of p to the median x-coordinate of Bq, and reset
only Bq.

We now prove a lower bound on the number of comparisons, T , that the algorithm A
makes. Let D be the sum of the depth of the boxes Bp in the tree T over all points p ∈ S
at the end of the simulation of the algorithm. We will lower bound T in terms of D.
Each time we reset a box to one of its children in step 1 or 2, D is incremented; we say
that an ordinary (resp. exceptional) increment occurs at the parent box if this is done
in step 1 (resp. step 2). Each comparison generates only O(1) ordinary increments.
To take exceptional increments into account, we use a little amortization argument:
At each box B in T , the number of ordinary increments has to reach at least ⌊|S ∩
B|/2⌋ first, before any exceptional increments can occur, and the number of exceptional
increments is at most ⌈|S ∩ B|/2⌉. Thus, the total number of exceptional increments
is asymptotically at most the total number of ordinary increments, which is O(T). It
follows that D ∈ O(T), i.e., T ∈ Ω(D).

Thus, it remains to prove our lower bound for D. We do this by showing that the
algorithm cannot terminate if there exists a box Bq which is not a leaf. After the end of
the simulation, we can do the following postprocessing: whenever there is an internal
node Bp, we reset Bp to one of its non-full children arbitrarily, and repeat. As a result,
every Bp becomes a leaf, all the input points have been assigned to points of S, and no
two input points assigned are the same value, i.e., the input is fixed to a permutation
of S. Since Bp is not a leaf, it contains at least two points and it is not completely
underneath the staircase of S. We can either move a nonmaximal point upward or a
maximal point downward inside Bp, and obtain a different input that is consistent
with the comparisons made but has a different set of maximal points. The algorithm
would be incorrect on this input: a contradiction.

Thus, at the end of the simulation, each box Bp has depth Θ(log(n/|S ∩ Bp|)). It
follows that

T ∈ Ω(D)

⊂ Ω

(
∑

leaf B

|S ∩B| log(n/|S ∩B|)
)

⊂ Ω(nH(Πkd-tree))

⊂ Ω(nH(S)).

Combined with the trivial Ω(n) lower bound, this establishes the theorem.

Remark 2.5. The above proof is inspired by an adversary argument described by
Chan [2009] for a 1-d problem (the original proof maintains a dyadic interval for each
input point, while the new proof maintains a box from a hierarchical subdivision). The
proof still holds for weaker versions of the problem, e.g., reporting the maxima in any
order, or just reporting the number of maximal points (or the parity of the number).
The lower-bound proof easily extends to any fixed dimension and can be easily modified
to allow comparisons of different coordinates of any two points p = (x1, . . . , xd) and
q = (x′

1, . . . , x
′
d), e.g., testing whether xi < x′

j , or even xi < x′
j + a for any constant a.

(For a still wider class of test functions, see the next section.)

3. CONVEX HULL

We now turn to our main result on 2-d and 3-d convex hull. It suffices to consider the
problem of computing the upper hull of an input point set S in R

d (d ∈ {2, 3}), since

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 P. Afshani et al.

the lower hull can be computed by running the upper hull algorithm on a reflection
of S. (Up to constant factors, the optimal running time for convex hull is equal to the
maximum of the optimal running time for upper hull and the optimal running time for
lower hull, on every input.)

We work with the class A of algorithms in a multilinear decision tree model where
we can access the input points only through tests of the form f(p1, . . . , pc) > 0 for a
multilinear function f , over a constant number of input points p1, . . . , pc. We recall the
following standard definition:

Definition 3.1. A function f : (Rd)c → R is multilinear if the restriction of f is a
linear function from R

d to R when any c− 1 of the c arguments are fixed. Equivalently,
f is multilinear if f((x11, . . . , x1d), . . . , (xc1, . . . , xcd)) is a multivariate polynomial func-
tion in which each monomial has the form xi1j1 · · ·xikjk where i1, . . . , ik are all distinct
(i.e., we cannot multiply coordinates from the same point).

Most of the 2-d and 3-d convex hull algorithms we know of fit this framework: it sup-
ports the standard determinant test (for deciding whether p1 is above the line through
p2, p3, or the plane through p2, p3, p4), since the determinant is a multilinear function.
For another example, consider how in 2 dimensions we can compare the slope of the
line through p1, p2 and the slope of the line through p3, p4 by testing the sign of the
function (y2 − y1)(x4 − x3)− (x2 − x1)(y4 − y3), which is clearly multilinear. We discuss
in Section 4.2 the relevance and limitations of the multilinear model.

We adopt the following modified definition of H(S) (as before, it does not matter
whether we insist that the simplices ∆k below are nonoverlapping):

Definition 3.2. A partition Π of S is respectful if each subset Sk in Π is either a
singleton or can be enclosed by a simplex ∆k whose interior is completely below the
upper hull of S. Define the structural entropy H(S) of S to be the minimum of H(Π) :=∑

k(|Sk|/n) log(n/|Sk|) over all respectful partitions Π of S.

3.1. Lower bound

The lower-bound proof for computing the convex hull builds on the corresponding
lower-bound proof for computing the maxima from Section 2.2 but is more involved, be-
cause a k-d tree construction no longer suffices when addressing nonorthogonal prob-
lems. However, known tools in computational geometry provide an appropriate analog:

LEMMA 3.3. For every set Q of n points in R
d and 1 ≤ r ≤ n, we can partition Q into

r subsets Q1, . . . , Qr each of size Θ(n/r) and find r convex polyhedral cells γ1, . . . , γr,
each of size O(log r), such that Qi is contained in γi, and each hyperplane intersects at
most O(r1−ε) cells. Here, ε > 0 is a constant that depends only on d.

PROOF. This is a consequence of Matoušek’s partition theorem [Matoušek 1992],
which provides the best constant, namely, ε = 1/d. Each cell γi is a simplex but the
cells may overlap. Note that our application requires that the subset sizes are lower-
bounded by Ω(n/r), which is guaranteed by Matoušek’s construction.

Note that in dimension 2 or 3, a more elementary solution follows from the 4-
sectioning or 8-sectioning theorem [Edelsbrunner 1987; Yao et al. 1989]: for every n-
point set Q in R

2, there exist 2 lines that divide the plane into 4 regions each with
n/4 points; for every n-point set Q in R

3, there exist 3 planes that divide space into 8
regions each with n/8 points. Since in R

2 a line can intersect at most 3 of the 4 regions
and in R

3 a plane can intersect at most 7 of the 8 regions, a simple recursive applica-
tion of the theorem yields ε ≈ 1 − log4 3 for d = 2 and ε ≈ 1 − log8 7 for d = 3. Each
resulting cell γi may have O(log r) facets, but the cells do not overlap.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Instance-Optimal Geometric Algorithms A:13

We need another fact, this time, a straightforward geometric property about multi-
linear functions:

LEMMA 3.4. If f : (Rd)c → R is multilinear and has a zero in γ1 × · · · × γc where
each γi is a convex polytope in R

d, then f has a zero (p1, . . . , pc) ∈ γ1 × · · · × γc such that
all but at most one point pi is a polytope’s vertex.

PROOF. Let (p1, . . . , pc) ∈ γ1 × · · · × γc be a zero of f . Suppose that some pi does
not lie on an edge of γi. If we fix the other c − 1 points, the equation f = 0 becomes a
hyperplane, which intersects γi and thus must intersect an edge of γi. We can move pi
to such an intersection point. Repeating this process, we may assume that every pi lies
on an edge uivi of γi. Represent the line segment parametrically as {(1 − ti)ui + tivi |
0 ≤ ti ≤ 1}.

Next, suppose that some two points pi and pj are not vertices. If we fix the other c−2
points and restrict pi and pj to lie on uivi and ujvj respectively, the equation f = 0
becomes a multilinear function in two parameters ti, tj ∈ [0, 1]. The equation has the
form atitj + a′ti + a′′tj + a′′′ = 0 and is a hyperbola, which intersects [0, 1]2 and must
thus intersect the boundary of [0, 1]2. We can move pi and pj to correspond to such
a boundary intersection point. Then one of pi and pj is now a vertex. Repeating this
process, we obtain the lemma.

We are now ready for the main proof in the order-oblivious setting: we show how to
extend this proof to the random-order setting in Section 4.1.

THEOREM 3.5. OPT(S) ∈ Ω(n(H(S) + 1)) for the upper hull problem in dimension
3 in the multilinear decision tree model.

PROOF. We define a partition tree T as follows: Each node v stores a pair
(Q(v), γ(v)), where Q(v) is a subset of S enclosed inside a convex polyhedral cell γ(v).
For each node v, let Γ(v) denote the intersection of γ(u) over all ancestors u of v. The
root stores (S,Rd). If Γ(v) is strictly below the upper hull of S, or if |Q(v)| drops below
a constant, then v is a leaf. Otherwise, fix Lemma 3.3’s parameter r to partition Q(v)
into b = r subsets Q1, . . . , Qb and cells γ1, . . . , γb. The pairs (Qi, γi) are the children
of v. For a node v at depth j of the tree T we have |Q(v)| ≥ n/Θ(b)j and since Γ(v)
is the intersection of at most j convex polyhedra of size polylogarithmic in b, it has
O(j log b) = O(bj) facets.

Let Πpart-tree be the partition formed by the subsets Q(v) at the leaves v in T . Let

Π̃part-tree be a refinement of this partition obtained as follows: for each leaf v at depth

j, we triangulate Γ(v) into (bj)O(1) simplices and subpartition Q(v) by placing points
of Q(v) from the same simplex in the same subset; if |Q(v)| drops below a constant, we
subpartition Q(v) into singletons. Note that the subpartitioning of Q(v) causes the en-
tropy to decrease by at most O((|Q(v)|/n) log(bj)O(1)) ⊂ O((|Q(v)|/n) log log(n/|Q(v)|))
for a constant b. The total decrease in entropy is thus within o(H(Πpart-tree)). So

H(Π̃part-tree) ∈ Θ(H(Πpart-tree)). Clearly, Π̃part-tree is respectful.
The adversary constructs a bad permutation for the input points as follows. During

the simulation, we maintain a node vp in T for each point p. If vp is a leaf, the algo-
rithm knows the exact location of p inside Γ(vp). But if vp is an internal node, the only
information the algorithm knows about p is that p lies inside Γ(vp).

For each node v in T , let n(v) be the number of points p with vp in the subtree rooted
at v. We maintain that n(v) ≤ |Q(v)|. If n(v) = |Q(v)|, we say that v is full. If vp is a leaf,
we fix p to an arbitrary unassigned point in Q(vp). The invariant ensures that such an
assignment can always be made.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 P. Afshani et al.

Suppose the simulation encounters a test “f(p1, . . . , pc) > 0?”.

(1) Consider a c-tuple (v′p1
, . . . , v′pc

) where v′pi
is a child of vpi

. We say that the tuple is
bad if f has a zero in γ(v′p1

) × · · · × γ(v′pc
), and good otherwise. We prove the exis-

tence of a good tuple by bounding the number of bad tuples from above: If we fix all
but one point pi, the restriction of f can have a zero in at most O(b1−ε) cells of the
form γ(v′pi

), by Lemma 3.3 and the multi-linearity of f . There are O(bc−1 polylog b)
choices of c − 1 vertices of the cells of the form γ(v′p1

), . . . , γ(v′pc
). By Lemma 3.4,

it follows that the number of bad tuples is at most O(bc−1 polylog b · b1−ε) =
O(bc−ε polylog b). As the number of tuples is within Θ(bc), if b is a sufficiently large
constant, then we can guarantee that some tuple (v′p1

, . . . , v′pc
) is good. We reset vpi

to v′pi
for each i = 1, . . . , c. Since the tuple is good, the sign of f is determined and

the comparison is resolved.
(2) In the exceptional case when some v′pi

is full, we reset vpi
instead to an arbitrary

non-full child that is not full, and go back to step 1.

The above description can be easily modified in the case when some of the nodes vpi

are leaves, i.e., when some of the points pi are already fixed (we just have to lower c by
the number of fixed points).

Let T be the number of tests made. Let D be the sum of the depth of vp over all
points p ∈ S. The rest of the argument is almost identical to the one described for 2-d
maxima: The same amortization argument as before (after adjustments of constant
factors), proves that T ∈ Ω(D). We observe that the algorithm cannot terminate if
there exists a box Bq which is not a leaf; thus, at the end of the simulation, each node
vp has depth within Θ(log(n/|Q(vp)|)). It follows that

T ∈ Ω(D)

⊂ Ω(
∑

leaf v

|Q(v)| log(n/|Q(v)|))

⊂ Ω(nH(Πpart-tree))

⊂ Ω(nH(Π̃part-tree))

⊂ Ω(nH(S)).

Combined with the trivial Ω(n) lower bound, this establishes the theorem.

3.2. Upper bound

In 2-d, an O(n(H(S) + 1)) upper bound can be established by using a version of Kirk-
patrick and Seidel’s (or Chan, Snoeyink, and Yap’s) convex hull algorithm [Chan et al.
1997; Kirkpatrick and Seidel 1986]: we describe in Section 3.2.1 a refined analysis of
this algorithm.

In 3-d, none of the previous output-sensitive algorithms seem to be instance-optimal
(e.g., known 3-d generalizations of the Kirkpatrick–Seidel algorithm have subopti-
mal O(n log2 h) running time [Chan et al. 1997; Edelsbrunner and Shi 1990], while a
straightforward implementation of Chan’s algorithm [Chan 1996b] fails to be instance-
optimal even in 2-d). We propose a new algorithm, which combines Chan’s tech-
nique [Chan 1996b] with additional ideas such as partition trees [de Berg et al. 1997;
Matoušek 1992].

3.2.1. Analysis of Kirkpatrick and Seidel’s 2-d convex hull algorithm. We prove that a version of
Kirkpatrick and Seidel’s output-sensitive upper hull algorithm [Kirkpatrick and Seidel
1986] runs in O(n(H(S)+ 1)) time. The algorithm is described below. Our version adds

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Instance-Optimal Geometric Algorithms A:15

Fig. 6. Graphic representation of our minor modification of Kirkpatrick and Seidel’s upper hull algo-
rithm [Kirkpatrick and Seidel 1986]. Their original algorithm was merely pruning the points of the area
directly under the edge found (center, in green here), while our version additionaly prunes the points below
the two upper hulls recursively computed (left and right, in yellow here).

an obvious pruning step on line 2: see Figure 6 for a graphical representation of the
addition.

hull2d(Q):
1. if |Q| = 2 then return Q
2. prune all points from Q strictly below the line through the leftmost and

rightmost points of Q
3. divide Q into the left and right halves Qℓ and Qr by the median x-coordinate pm
4. discover points q, q′ that define the upper-hull edge qq′ intersecting the vertical

line at pm (in linear time)
5. prune all points from Qℓ and Qr that are strictly underneath the line segment qq′

6. return the concatenation of hull2d(Qℓ) and hull2d(Qr)

Line 4 can be done in O(n) time (without knowing the upper hull beforehand) by ap-
plying a 2-d linear programming algorithm in the dual [Preparata and Shamos 1985].
We call hull2d(S) to start. It is straightforward to show that the algorithm, even with-
out line 2, runs in time O(n log h), or O(n(H(Πvert) + 1)) for the specific partition Πvert

of S obtained by placing points underneath the same upper-hull edge in the same
subset, as was done by Sen and Gupta [1999]. To upper-bound the running time by
O(n(H(Π) + 1)) for an arbitrary respectful partition Π of S, we modify the proof in
Theorem 2.3:

THEOREM 3.6. Algorithm hull2d runs in time within O(n(H(S)+1)) on an instance
S of n points and structural entropy H(S).

PROOF. Like before, let Xj denote the sublist of all hull vertices discovered during
the first j levels of the recursion, in left-to-right order. Observe that (i) there can be at
most ⌈n/2j⌉ points of S with x-coordinates between any two consecutive vertices in Xj ,
and (ii) all points that are strictly below the upper hull of Xj have been pruned during
the first j levels of the recursion.

Let Π be any respectful partition of S. Look at a subset Sk in Π. Let ∆k be a triangle
enclosing Sk whose interior lies below the upper hull of S. Fix a level j. If qi and qi+1

are two consecutive vertices in Xj such that qiqi+1 does not intersect the boundary of
∆k (i.e., is above ∆k), then all points in ∆k with x-coordinates between qk, qk+1 would
have been pruned during the first j levels by (ii). Since only O(1) edges qiqi+1 of the
upper hull of Xj can intersect the boundary of ∆k, the number of points in Si that

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 P. Afshani et al.

survive level j is at most min
{
|Sk|, O(n/2j)

}
by (i). As before, we can then bound the

running time asymptotically by
∑

k

∑logn
j=0 min

{
|Sk|, n/2j

}
∈ O(n(H(Π) + 1)).

Remark 3.7. The same result holds for Chan, Snoeyink, and Yap’s simplified
output-sensitive algorithm, which avoids calling a 2-d linear programming algorithm.
(In fact, Chan et al.’s paper explicitly adds the pruning step in their description, in-
spired by quickhull.) The only difference in the above analysis is that there can be at
most ⌈(3/4)jn⌉ points of S with x-coordinates between any two consecutive vertices in
Xj .

3.2.2. Convex Hull in 3-d. Unlike in 2-d, it is unclear if any of the known algorithms
can be modified for this purpose. For example, it is already nontrivial how to get an
O(nH(Πvert)) upper bound for the specific partition Πvert where points underneath the
same upper-hull facet are placed in the same subset. Fortunately, our lower-bound
proof suggests a solution based on partition trees.

We need the following subroutine, previously described by Chan [Chan 1996b;
1996c], which is obtained by applying a simple grouping trick in conjunction with stan-
dard data structures [Chan 1996a].

LEMMA 3.8. We can answer a sequence of r linear programming queries over a
given set of n halfspaces in R

3 in total time O(n log r + r logn).

Our new upper hull algorithm is as follows:

hull3d(Q):
1. for j = 0, 1, . . . , ⌈log(δ logn)⌉ do

2. partition Q by Lemma 3.3 to get rj := 22
j

subsets Q1, . . . , Qrj and cells γ1, . . . , γrj
3. for each i ∈ [1..22

j

] do
4. if γi is strictly below the upper hull of Q then prune all points in Qi from Q
5. return the upper hull of the remaining set Q

Line 2 takes O(|Q| log rj) time by known algorithms [Matoušek 1992] for Lemma 3.3
(either option). The test in line 4 reduces to deciding whether each vertex of γi is
strictly below the upper hull of Q. This can be done (without knowing the upper hull be-
forehand) by answering a 3-d linear programming query in the dual. Using Lemma 3.8,
we can perform lines 3–5 collectively in time O(|Q| log rj + rj polylog rj logn); note that∑

j rj ∈ O(nδ), and so the second term is negligible by choosing a constant δ < 1. Line 5

is done by running any O(|Q| log |Q|)-time algorithm; note that log |Q| ∈ O(log rj) in the
last iteration.

THEOREM 3.9. Algorithm hull3d runs in time within O(n(H(S)+1)) on an instance
S of n points and of structural entropy H(S).

PROOF. Let nj be the size of Q just after iteration j. The total running time is
asymptotically bounded by

∑
j nj−1 log rj .

Let Π be any respectful partition of S. Look at a subset Sk in Π. Let ∆k be a simplex
enclosing Sk whose interior lies below the upper hull of S. Fix an iteration j. Consider
the subsets Q1, . . . , Qrj and cells γ1, . . . , γrj at this iteration. If a cell γi is completely

inside ∆k, then all points inside γi are pruned. Since O(r1−ε
j) cells γi intersect the

boundary of ∆k, the number of points in Sk that remain in Q after iteration j is at
most min

{
|Sk|, O(r1−ε

j · n/rj)
}

= min
{
|Sk|, O(n/rεj)

}
. The Sk’s cover the entire point

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Instance-Optimal Geometric Algorithms A:17

set, so with a double summation we have
∑

j

nj log rj+1 ≤
∑

k

∑

j

min
{
O(2j)|Sk|,

n

2Ω(ε2j)

}

∈ O(n(H(Π) + 1)),

which yields the theorem.

Remark 3.10. Variants of the algorithm are possible. For example, instead of re-
computing the partition in line 3 at each iteration from scratch, a better option is to
build the partitions hierarchically as a tree. Nodes are pruned as the tree is generated
level by level.

One minor technicality is that the above description of the algorithm does not discuss
the low-level test functions involved. In Section 4.2 we explain how a modification of
the algorithm can indeed be implemented in the multilinear model.

The same approach works for 3-d maxima as well. In the comparison model, the par-
titions can be constructed by a k-d tree construction, and linear programming queries
are replaced by queries to test whether a point lies underneath the staircase, which
can be done via an analog of Lemma 3.8.

4. EXTENSION OF RESULTS

4.1. The random-order setting

In this section, we describe how the preceding lower-bound proofs in the order-oblivious
setting can be modified in the random-order setting.

First, the proof in Section A can easily be made to work in the random-order set-
ting, since in any encoding scheme, only a very small (at most 2−c0n) fraction of the n!
permutations can have encoding length less than log(n!)− c0n for a constant c0.

Modifying the proof of Theorem 2.4 requires more effort. We need a technical lemma
first:

LEMMA 4.1. Suppose we place n random elements independently in t bins, where
each element is placed in the k-th bin with probability nk/n. Then the probability that

the k-th bin contains exactly nk elements for all k = 1, . . . , t is at least n−O(t).

PROOF. The probability is n!
n1!···nt!

(
n1

n

)n1 · · ·
(
nt

n

)nt
, which by Stirling’s formula is

Θ(
√
n)(n/e)n/e

Θ(
√
n1)(n1/e)n1/e · · ·Θ(

√
nt)(nt/e)nt/e

(n1

n

)n1

· · ·
(nt

n

)nt

≥ 1

Θ(
√
n)t

,

which yields the result.

The new lower-bound proof is loosely inspired by the randomized “bit-revealing” ar-
gument by Chan [2009]:

THEOREM 4.2. OPTavg(S) ∈ Ω(n(H(S)+1)) for the 2-d maxima problem in the com-
parison model.

PROOF. Fix a sufficiently small constant δ > 0. Let T be as in the proof of Theo-
rem 2.4, except that we keep only the first ⌊δ logn⌋ levels of the tree, i.e., when a node
reaches depth ⌊δ logn⌋, it is made a leaf.

Let Πkd-tree be the partition of S formed by the leaf boxes in T . Let Π̃kd-tree be a refine-
ment of Πkd-tree in which each subset corresponding to a box of depth ⌊δ logn⌋ is further

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 P. Afshani et al.

subpartitioned into singletons. Note that each such subset has size Θ(nδ) and con-

tributes Θ((nδ/n) logn) to both the entropy of Πkd-tree and Π̃kd-tree. Thus, H(Π̃kd-tree) =

Θ(H(Πkd-tree)). Clearly, Π̃kd-tree is respectful.
The adversary proceeds differently. We do not explicitly maintain the invariant that

no box B is full. Whenever some Bp first becomes a leaf, we assign p at random among
the points in S ∩Bp that has previously not been assigned. If all points in S ∩Bp have
in fact been assigned, we say that failure occurs.

When the simulation encounters a comparison, say, of the x-coordinates, between
two points p and q, we do the following:

— We reset Bp to one of its children at random, where each child B′
p is chosen with

|S∩B′
p|/|S∩Bp| (which is about 1/2 for a k-d tree construction). We reset Bq similarly

to one of its children at random. If the new Bp and Bq are now vertically separated,
then the comparison is already resolved. Otherwise, we repeat.

Observe that in the above, if Bp and Bq are both at odd depths and w.l.o.g. the me-
dian x-coordinate of Bp is less than the median x-coordinate of Bq, then the comparison
is resolved when we choose the left child of Bp and the right child of Bq, and this occurs
with probability at least a positive constant (about 1/4). Thus, with at least a positive
constant probability, the comparison is resolved within 2 iterations. The number of it-
erations per comparison is thus upper-bounded by a geometrically distributed random
variable with mean O(1).

Let T be the number of comparisons made. Let D be the sum of the depth of Bp over
all points p ∈ S at the end of the simulation. Clearly, D is upper-bounded by the total
number of iterations performed, which is at most a sum of T independent geometrically
distributed random variables with mean O(1). Let (∗) be the event that D ≤ c0T for a
sufficiently large constant c0. By the Chernoff bound, Pr[(∗)] ≥ 1− 2−Ω(T) ≥ 1− 2−Ω(n).

After the end of the simulation, we can do the following postprocessing: whenever
there is an internal node Bp, we reset Bp to one of its children at random as above. As
a result, every Bp becomes a leaf, and the input is fixed to a permutation of S, so long
as failure does not occur.

By the same argument as before, we see that every Bp is already a leaf by the end
of the simulation, or failure occurs during simulation or postprocessing. Let (†) be the
event that failure does not occur. Thus, if (∗) and (†) are both true, then

T ∈ Ω(D)

⊂ Ω

(
∑

leaf B

|S ∩B| log(n/|S ∩B|)
)

⊂ Ω(nH(Πkd-tree))

⊂ Ω(nH(Π̃kd-tree))

⊂ Ω(nH(S)).

To analyze Pr[(†)], consider the leaf box Bp that a point p ends up with after the
simulation and postprocessing (regardless of whether failure has occurred). This is a
random variable, which equals a fixed leaf box B with probability |S ∩B|/n. Moreover,
all these random variables are independent. Failure occurs if and only if for some
leaf box B, the number of Bp’s that equal B is different from |S ∩ B|. By Lemma 4.1,

Pr[(†)] ≥ n−O(nδ), since there are at most O(nδ) leaves in T . It follows that

Pr[not (∗) | (†)] ≤ Pr[not (∗)]
Pr(†) ≤ 2−Ω(n)

n−O(nδ)
= 2−Ω(n).

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Instance-Optimal Geometric Algorithms A:19

Fig. 7. An example of instance on which a specific adversary algorithm using non multilinear operations
outperforms any algorithm in the multilinear model. A single disc (yellow arc) covers all n − h dominated
points (dark points) while being totally below the staircase formed by the h output points (red points), so
that an algorithm can eliminate the n − h points in time within O(n), compute the staircase and check
that it dominates the disc in time within O(h lg h). On the other hand, each of the h output points uniquely
dominates n/h− 1 points (i.e. no pair of output points dominate the same points), so that any algorithm in
the multilinear model to perform a number of operations within Ω(n lg h)).

Finally, observe that Pr[(†) ∧ the input equals σ] is the same for all fixed permu-

tations σ of S (namely the probability is
∏

leaf B

(
|S∩B|

n

)|S∩B|
1

|S∩B|!). In other words,

conditioned to (†), the input is a random permutation of S, i.e., the adversary does not
act adversarily at all! It follows that T ∈ Ω(nH(S)) with high probability for a random
permutation of S. In particular, E[T] ∈ Ω(nH(S)) for a random permutation of S.

Applying the same ideas to the proof of Theorem 3.5 shows that OPTavg(S) ∈
Ω(n(H(S) + 1)) for the 2-d upper hull problem in the multilinear decision tree model.

4.2. On the multilinear model

There are situations where non-multilinear test functions arise, and in which the lim-
its of the multilinear model show. For example, one can easily design both an instance
I of the maxima problem with h output points, each dominating n/h−1 internal points
(see Figure 7 for a graphical representation of such an example), and an algorithm A
using non multilinear operations, such that

— the algorithm A “guesses” in constant time a circle covering all non-maxima points,
prunes them all in linear time (by computing the distance of input point to the
circle’s center), and computes the convex hull of the h points left in time within
O(h lg h), summing up to a total complexity within O(n+ h lg h); while

— a more conventional algorithm in the multilinear model (such as Kirkpatrick and
Seidel’s) must perform time within Ω(n lg h) (as a consequence of Theorem 2.4).

This implies in particular that no algorithm in the multilinear model can be (input
order oblivious) instance optimal in a model relaxing the multilinear constraint.

Nevertheless, many commonly encountered test functions in geometric algorithms
are multilinear. For example, in 3-d, the predicate ABOVE(p1, . . . , p4) which returns
true if and only if p1 is above the plane through p2, p3, p4, reduces to testing signs of
multilinear functions.

More generally, say that a function f : (Rd)c → R
d is quasi-multilinear if

f(p1, . . . , pc) = (f1(p1, . . . , pc), . . . , fd(p1, . . . , pc)) where fi = hi(p1, . . . , pc)/g(p1, . . . , pc)
in which f1, . . . , fd, g : (Rd)c → R are multi-linear functions. For example, in 3-d, the

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 P. Afshani et al.

function PLANE(p1, . . . , p4) which returns the dual of the plane through p1, . . . , p4, or
the function INTERSECT(p1, . . . , p4) which returns the intersection of the dual planes
of p1, . . . , p4, are quasi-multilinear. We can get more quasi-multilinear and multilin-
ear functions by composition: e.g., if f1, . . . , f4 : (R3)4 → R

3 are quasi-multilinear,
then INTERSECT(f1(p1, . . . , p4), , . . . , f4(p13, . . . , p16)) is quasi-multilinear in p1, . . . , p16,
by expanding all the determinants. More elaborately, a predicate such as

ABOVE

p17,
p18,
p19,

INTERSECT

PLANE(p1, . . . , p4),
PLANE(p5, . . . , p8),
. . . ,
PLANE(p13, . . . , p16)

also reduces to multilinear tests. However, we may run into problems if a point occurs
more than once, e.g.,

ABOVE

p17,
p18,
p1,

INTERSECT

PLANE(p1, . . . , p4),
PLANE(p5, . . . , p8),
. . . ,
PLANE(p13, . . . , p16)

,

since the expansion of the determinants may yield monomials of the wrong type. In
most 2-d algorithms, this kind of tests does not arise. Unfortunately, they can occa-
sionally happen in our 3-d upper hull algorithm in Section 3.2. We describe some mod-
ifications to the algorithm that can avoid these problematic tests.

First, for the partition construction, it would be easier to choose the second option in
the proof of Lemma 3.3. By perturbing the dividing planes, one can show the existence
of 3 planes each passing through 3 input points, where the 9 points are distinct, so
that each of the resulting 8 regions contains n/8±O(1) points. A brute-force algorithm
can find the 3 planes in polynomial time. We can reduce the construction time by
using the standard technique of ε-approximations [Matoušek 2000] (at the expense
of a small change in the constant). It can be checked that known constructions for ε-
approximations fits in the multilinear model (it suffices to check the implementation
of the “subsystem oracle”). As a result, we can ensure that the cells are all defined by
planes that pass through 3 input points, where no two planes share a common defining
point. A vertex v of a cell is an intersection of 3 such planes and is defined by a set of 9
distinct input points, denoted DEF(v).

A problem occurs in testing whether a vertex v of a cell γi lies below the upper
hull, specifically, when we try to compare v against a feature that share a common
defining point. For this reason, we weaken the test in line 5: we prune only when each
vertex v of γi lies strictly below the upper hull of Q − DEF(v). It can be checked that
some version of Lemma 3.8 can support O(r) such queries in the multilinear model, in
O(n log r + rn1−α) time for some α > 0.

Since the pruning condition is weaker, the analysis needs more effort. We assume
that the partition in line 3 is generated hierarchically in the following way: first we
find a partition of Q by Lemma 3.3 with

√
rj subsets Q′

ℓ and cells γ′
ℓ; then for each

subset Q′
ℓ, we find a partition of Q′

ℓ again by Lemma 3.3 with
√
rj subsubsets Qi and

cells γi.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Instance-Optimal Geometric Algorithms A:21

In the second paragraph of the proof of Theorem 3.9, we proceed differently. Suppose
a point p lies in the subset Q′

ℓ and the subsubset Qi. Observe that if the corresponding
cells γ′

ℓ and γi are both completely inside ∆k, then all points inside γi are pruned. This
is because for each vertex v of the cell γi, the defining points DEF(v) are contained in
Q′

ℓ ⊂ γ′
ℓ and so cannot appear on the upper hull of Q; the vertex v lies strictly below

the upper hull of Q, which coincides with the upper hull of Q− DEF(v).
At most O(

√
rj

1−ε) cells γ′
ℓ intersect the boundary of ∆k. At most O(

√
rj · √rj

1−ε)
cells γi intersect the boundary of ∆k. Hence, the number of points in Sk that remain
in Q after iteration j is at most min

{
|Sk|, O(

√
rj

1−ε · n/√rj +
√
rj · √rj

1−ε · n/rj)
}

=

min
{
|Sk|, O(n/r

ε/2
j)

}
. The rest of the proof is then the same, after readjusting ε.

5. OTHER APPLICATIONS

We can apply our techniques to obtain instance-optimal algorithms for a number of
geometric problems in the order-oblivious and random-order setting:

(1) Off-line halfspace range reporting in 2-d and 3-d: given a set S of n points and
halfspaces, report the subset of points inside each halfspace. Algorithms with
Θ(n logn + K) running time [Chazelle et al. 1985; Chan 2000; Afshani and Chan
2009] are known for total output size K (the 3-d algorithm is randomized).

(2) Off-line dominance reporting in 2-d and 3-d: given a set S of red/blue points, report
the subset of red points dominated by each blue point. The problem has similar
complexity as in item 1.

(3) Orthogonal segment intersection in 2-d: given a set S of n horizontal/vertical line
segments, report all intersections between the horizontal and vertical segments,
or count the number of such intersections. The problem is known to have worst-
case complexity Θ(n logn + K) in the reporting version, for output size K, and
complexity Θ(n logn) in the counting version [de Berg et al. 1997; Preparata and
Shamos 1985].

(4) Bichromatic L∞-close pairs in 2-d: given a set S of n red/blue points in 2-d, report
all pairs (p, q) where p is red, q is blue, and p and q have L∞-distance at most 1, or
count the number of such pairs. Standard techniques in computational geometry
[de Berg et al. 1997; Preparata and Shamos 1985] yield algorithms with the same
complexity as in item 3.

(5) Off-line orthogonal range searching in 2-d: given a set S of n points and axis-
aligned rectangles, report the subset of points inside each rectangle, or count the
number of such points inside each rectangle. The worst-case complexity is the same
as in item 3.

(6) Off-line point location in 2-d: given a set S of n points and a planar connected
polygonal subdivision of size O(n), report the face in the subdivision containing
each point. Standard data structures [de Berg et al. 1997; Preparata and Shamos
1985; Snoeyink 1997] imply a worst-case running time of Θ(n logn).

For each of the above problems, it is not difficult to see that certain input sets are
indeed “easier” than others, e.g., if the horizontal segments and the vertical segments
respectively lie inside two bounding boxes that are disjoint, then the orthogonal seg-
ment intersection problem can be solved in O(n) time.

Note that although some of the above problems may be reducible to others in terms
of worst-case complexity, the reductions may not make sense in the instance-optimality
setting. For example, an instance-optimal algorithm for a problem does not imply an
instance-optimal algorithm for a restriction of the problem in a subdomain, because in
the latter case, we are competing against algorithms that have to be correct only for
input from this subdomain.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 P. Afshani et al.

Our results for off-line halfspace range reporting and point location are in the mul-
tilinear decision tree model, whereas the other results are in the comparison model.

5.1. Reporting problems

Many of the problems listed above belong to the following common framework. Let
R ⊂ R

d × R
d′

be a relation for some constant dimensions d and d′. We say that a red
point p ∈ R

d and a blue point q ∈ R
d′

interact if (p, q) ∈ R. We consider the reporting

problem: given a set S containing red points in R
d and blue points in R

d′

of total size n,
report all K interacting red/blue pairs of points in S. Note that by scanning the output
pairs, we can collect the subset of all blue points that interact with each red point, in
O(K) additional time.

We say that a red (resp. blue) cell γ is uninteresting to S if every red (resp. blue) point
in γ interacts with exactly the same subset of blue (resp. red) points in S. We redefine
H(S) as follows:

Definition 5.1. A partition Π of S is respectful if each subset Sk in Π either is a
singleton or is a monochromatic subset of points that can be enclosed by a simplex ∆k

that is uninteresting to S. Define the structural entropy H(S) of S to be the minimum
of H(Π) :=

∑
k(|Sk|/n) log(n/|Sk|) over all respectful partitions Π of S.

It is straightforward to modify the proofs on the convex hull problem from Section 3.1
and 4.1 to show an OPT(S),OPTavg(S) ∈ Ω(n(H(S) + 1) + K) lower bound for this
problem: We now keep two partition trees, one for each color. If Γ(v) is uninteresting
to S, we make v a leaf. At the end, if some red (resp. blue) node vp is not a leaf, we can
move p to some point inside Γ(vp) and change the answer. (The Ω(K) term in the lower
bound is obvious, by the way.)

For the upper-bound side, we need three requirements about R for some constant
α > 0:

(A) There is a worst-case algorithm for the reporting problem that runs in O(n log n+
K) time.

(B) There is a data structure for the blue (resp. red) points in S, with O(n logn) prepro-
cessing time, such that we can report all κ blue (resp. red) points interacting with
a query red (resp. blue) point in O(n1−α + κ) time.

(C) There is a data structure for the blue (resp. red) points in S, with O(n log n) pre-
processing time, such that we can test whether a query red (resp. blue) simplex γ
is uninteresting to S in O(n1−α) time.

Under these assumptions, it is straightforward to modify the algorithm from Sec-
tion 3.2.1 to produce an O(n(H(S) + 1)+K)-time algorithm: In line 3, we partition the
red points of Q first. In line 5, if some red cell γi is uninteresting to Q, then we find the
subset Z of blue points interacting with an arbitrary red point in γi, output all pairs
between the red points of Qi and the blue points of Z, and prune the red points of Qi

from Q. The test requires querying the data structure in (C) (after triangulating γi); the
subset Z can be found by querying the data structure in (B). The grouping technique
by Chan [1996c] yields an analog of Lemma 3.8 with running time O(n log r + rn1−α)
for r queries of type (C), and O(n log r + rn1−α + κ) for r queries of type (B) with total
output size κ (since the problems in (B) and (C) are “decomposable”). Before moving to
the next iteration, we redo lines 3–5, this time partitioning the blue points of Q and
pruning red points. At the end, in line 6, we switch to the algorithm in (A). The same
analysis then goes through, by choosing a constant δ < α.

Note that for orthogonal problems in the comparison model, we can make all the
cells (all the γ’s and ∆’s) axis-aligned boxes, by reverting to a k-d tree construction.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Instance-Optimal Geometric Algorithms A:23

We now check that the requirements are satisfied for some specific reporting prob-
lems.

— Off-line halfspace range reporting in 2-d and 3-d: It suffices to consider lower halfs-
paces in the input. Color the given points red, and map the given lower halfspaces to
blue points by duality. The data structure problem in (B) is just halfspace range re-
porting. The data structure problem in (C) is equivalent to testing whether a query
simplex intersects a given set of hyperplanes (lines in 2-d or planes in 3-d); this re-
duces to ray shooting (or segment emptiness) queries in a hyperplane arrangement,
for which there are known results [Agarwal and Matoušek 1993; Matoušek 1992].
Requirement (A) is satisfied in 2-d and 3-d (the 3-d algorithm is randomized).

— Off-line dominance reporting in 2-d and 3-d: The data structure problem in (B) is
just dominance reporting. The data structure problem in (C) is equivalent to testing
whether all the corners of a query box are dominated by the same number of points
from a given point set. This reduces to orthogonal range counting [Agarwal and
Erickson 1999; de Berg et al. 1997; Preparata and Shamos 1985].

— Orthogonal segment intersection in 2-d: Map each each horizontal line segment
(x′, y)(x′′, y) to a red point (x′, x′′, y) ∈ R

3 and each vertical line segment (x, y′)(x, y′′)
to a blue point (x, y′, y′′) ∈ R

3. These mappings to R
3 are bijective. The data struc-

ture problem in (B) corresponds to reporting the vertical segments from a given set
that intersect a query horizontal segment. The data structure problem in (C) is more
complicated: for a query box γ = [ξ1, ξ2]× [ξ3, ξ4]× [ξ5, ξ6], we want to decide whether

there exists a horizontal segment (x′, y)(x′′, y) with (x′, x′′, y) ∈ γ that intersects a
given set of vertical segments. This is equivalent to testing whether a query rectan-
gle [min{ξ1, ξ3},max{ξ2, ξ4}]× [ξ5, ξ6] intersects a given set of vertical segments. Both
data structure problems reduce to orthogonal intersection searching (which in turn
reduces to orthogonal range searching by lifting to a higher dimension, and thus
admits data structures with O(n logn) preprocessing time and O(nε) query time).
Clearly, the resulting algorithm works in the comparison model.

— Bichromatic L∞-close pairs in 2-d: The problem in (B) corresponds to reporting all
points of a given point set that are inside a query square of side length 2. The prob-
lem in (C) corresponds to deciding, for a query box γ = [ξ1, ξ2] × [ξ3, ξ4], whether
[ξ1 − 1, ξ2 + 1]× [ξ3 − 1, ξ4 + 1] contains a point from a given set. Both data structure
problems reduce to orthogonal range searching.
Note that here the resulting algorithm requires slightly more general tests of the
form mentioned in Remark 2.5, which are allowed in the lower-bound proof.

— Off-line orthogonal range reporting in 2-d: Color the given points red, and map each
rectangle with corners (x1, y1), (x1, y2), (x2, y1), (x2, y2) to a blue point (x1, x2, y1, y2) ∈
R

4. The mapping to R
4 is bijective. The blue data structure problem in (B) corre-

sponds to reporting all points from a given set that are inside a query rectangle.
The red data structure problem in (B) corresponds to reporting all rectangles from
a given set that contain a query point.
The red data structure problem in (C) corresponds to deciding, for a query
box γ = [ξ1, ξ2] × [ξ3, ξ4] × [ξ5, ξ6] × [ξ7, ξ8], whether all rectangles with cor-
ners (x1, y1), (x1, y2), (x2, y1), (x2, y2), (x1, x2, y1, y2) ∈ γ, contain the same num-
ber of points from a given set. This is equivalent to testing whether the
rectangle [min{ξ1, ξ3},max{ξ2, ξ4}] × [min{ξ5, ξ7},max{ξ6, ξ8}] contains the same
number of points from a given set as the rectangle [max{ξ1, ξ3},min{ξ2, ξ4}] ×
[max{ξ5, ξ7},min{ξ6, ξ8}].
The blue data structure problem in (C) corresponds to deciding, for a query point
γ = [ξ1, ξ2]× [ξ3, ξ4], whether γ intersects any rectangle from a given set.
All these data structure problems reduce to orthogonal range/intersection searching.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 P. Afshani et al.

5.2. Counting problems

We can also consider counting problems where we want the total number of interact-
ing red/blue pairs. We just need to change requirement (A) to the existence of a count-
ing algorithm that runs in O(n log n) time, and requirement (B) to the existence of a
similar counting data structure without the O(κ)-term penalty. These requirements
are satisfied by orthogonal segment intersection counting, bichromatic L∞-close pairs,
and off-line orthogonal range counting. The same lower- and upper-bound proofs yields
Θ(n(H(S) + 1)).

If we want individual counts, i.e., the number of red points that interact with each
blue point, we need a further assumption—that the data structure in (B) can operate
in the semigroup model [Agarwal and Erickson 1999]. (This assumption is true for
the specific problems mentioned in the preceding paragraph.) This way, we can report
all interacting red/blue pairs as a disjoint union of bicliques Pi × Qi with total sizes∑

i(|Pi| + |Qi|) bounded by O(n(H(S) + 1)), without the O(K)-term penalty. We can
keep a counter for each blue point, scan through each biclique, and add the number
of red points in the biclique to the counter of each blue point in the biclique, in total
additional time O(

∑
i(|Pi|+|Qi|)), which is absorbed in the overall cost. We assume that

the algorithm in requirement (A) can produce individual counts but does not need to
be the semigroup model. At the end (line 6), we can add the individual counts produced
by this algorithm to the corresponding counters of each blue point.

5.3. Detection problems

We can also consider detection problems where we simply want to decide whether there
exists an interacting red/blue pair. Here, we redefine H(S) by redefining “uninterest-
ing”: a red (resp. blue) cell γ is now considered uninteresting to S if no red (resp. blue)
point in γ interacts with any blue (resp. red) points in S. We change requirements (A)
and (B) to the existence of counting algorithms and data structures without the O(K)
and O(κ) terms.

The proof of the upper bound O(n(H(S) + 1)) is the same, but the proof of the lower
bound Ω(n(H(S) + 1)) only goes through for instances with a NO answer: at the end,
if some red (resp. blue) node vp is not a leaf, we can move p to some point inside Γ(vp)
and change the answer from NO to YES.

YES instances are problematic, but this is not a weakness of our technique but of
the model: on every input set S with a YES answer, OPT(S) is in fact O(n). To see this,
consider an input set S for which there exists an interacting pair (p, q). An algorithm
that is “hardwired” with the ranks of p and q in S with respect to, say, the x-sorted
order of S can first find p and q from their ranks by linear-time selection, verify that p
and q interact in constant time, and return YES if true or run a brute-force algorithm
otherwise. Then on every permutation of this particular set S, the algorithm always
takes linear time. Many problems admit Ω(n logn) worst-case lower bounds even when
restricted to YES instances, and for such problems, instance optimality in the order-
oblivious setting is therefore not possible on all instances.

5.4. More off-line/on-line querying problems

We now study problems from another framework. Let M be a mapping from points in
R

d to “answers” in some space; the answer M(q) of a point q ∈ R
d may or may not have

constant size depending on the context. We consider the following off-line querying
problem: given a set S of n points in R

d, compute M(q) for every q ∈ S. In addition, we
consider the following on-line querying problem: given a set S of n points in R

d, build
a data structure for S so that we can compute M(q) for any query point q ∈ R

d, while
trying to minimize the average query cost over all q ∈ S.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Instance-Optimal Geometric Algorithms A:25

We redefine H(S) by redefining “uninteresting”: a cell γ is now considered uninter-
esting to M if every point q in γ has the same answer M(q).

For the off-line problem, our lower-bound proof gives Ω(n(H(S) + 1)) even if M has
been preprocessed in advance. For the on-line problem, the same proof shows that
running a sequence of n queries over some permutation of S requires Ω(n(H(S) + 1))
time, even if the set S (not the permutation) has been preprocessed in advance. So, the
average query time is Ω(H(S) + 1). (In contrast, lower bounds for the on-line problem
do not necessarily translate to lower bounds for the off-line problem.)

For the upper-bound side, we need two requirements about M for some constant
α > 0 and some parameter m describing the size of M. We assume that M has been
preprocessed in some data structure.

(A) Given q ∈ R
d, we can compute M(q) in O(logm + κ) worst-case time for output

size κ.
(C) Given a simplex γ, we can test whether γ is uninteresting to M in O(m1−α) time.

The algorithm this time is actually simpler, because there is only one color. Instead

of using a 22
j

progression, we use a straightforward b-way recursion, for some fixed
parameter b (the resulting recursion tree mimics the tree T from the lower-bound proof
in Theorem 3.5, on purpose):

off-line-queries(Q,Γ), where Q ⊂ Γ:
1. if |Q| drops below n/mδ then return answers directly
2. partition Q by Lemma 3.3 to get b subsets Q1, . . . , Qb and cells γ1, . . . , γb
3. for each i do
4. if γi ∩ Γ is uninteresting to M then
5. compute M(q) for an arbitrary point q ∈ γi ∩ Γ
6. output M(q) for the points in Qi

7. else off-line-queries(Qi, γi ∩ Γ)

We call off-line-queries(S,Rd) to start. Line 1 takes O(|Q| logm + κ) time for output
size κ by switching to the data structure for (A); note that each point in Q in this case
has participated in Ω(logm) levels of the recursion, and we can account for the first
term by charging each point unit cost for every level it participates in. Line 2 takes
O(|Q|) time for a constant b by known constructions [Matoušek 1992]. Line 4 takes
O(m1−α polylogm) time (γi∩Γ has O(polylogm) vertices), by (C); this cost is negligible
by choosing a sufficiently small constant δ < α, since the recursion tree has O(mδ)
nodes. Line 5 takes O(logm + κ) time for output size κ, by (A); the O(logm) term is
again negligible.

For the on-line problem, we just build a data structure corresponding to the recur-
sion tree generated above, in addition to the data structure for (A); the extra space is
O(mδ).

THEOREM 5.2. The above off-line querying algorithm runs in O(n(H(S) + 1) + K)
time for total output size K. For the on-line querying problem, it produces a data struc-
ture that has average query cost O(H(S) + 1 + κ) for output size κ.

PROOF. Let nj be number of points in S that survive level j, i.e., participate in
subsets Q at level j of the recursion. The total running time for the off-line problem
is asymptotically bounded by

∑
j nj . Similarly, for the on-line problem, the total query

cost over all q ∈ S is asymptotically bounded by
∑

j nj .

Let Π be any respectful partition of S. Look at a subset Sk in Π. Let ∆k be a simplex
enclosing Sk that is contained inside one face of M . Fix a level j. Let Qi’s and γi’s be

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 P. Afshani et al.

the subsets Q and cells γ at level j. Each Qi has size at most n/Θ(b)j. The number of
γi’s that intersect each side of ∆k is at most O(b1−ε)j . Thus, the number of points in
Sk that survive level j is at most min

{
|Sk|, O(b1−ε)j · n/Θ(b)j

}
. Since the Sk ’s cover the

entire point set, with a double summation we have, for a sufficiently large constant b,
∑

j

nj ≤
∑

k

∑

j

min
{
|Sk|, ⌈n/Θ(b)εj⌉

}

= O(n(H(Π) + 1)).

For the on-line problem, the above approach works, after straightforward modifi-
cations, for weighted point sets S where we want to minimize the weighted average
query cost. In principle, the approach works not only for discrete point sets S but also
for continuous probability distributions, since the query bound does not depend on the
size n of S explicitly and can be imagined to approach infinity. “Average query cost”
over a finite set of query points now becomes “expected query cost” over a query point
distribution. (The preprocessing time can also be made independent of n, under some
computational assumptions about the distribution.)

Below, we briefly mention applications to some specific off-line/on-line querying prob-
lems.

— Off-line/on-line point location queries in 2-d: For the off-line planar point location
problem, the data structure for requirement (A) only needs O(m) preprocessing time
and space [Kirkpatrick 1983; Chazelle 1991; Snoeyink 1997]. The data structure
problem in (C) reduces to testing whether a triangle is contained in a face of the
subdivision; this reduces to ray shooting (or segment emptiness) queries in a polyg-
onal subdivision, for which there are known results [Chazelle et al. 1994]. The total
running time is O(n(H(S) + 1)), including preprocessing, if the subdivision has size
m = O(n). (For this problem, output sizes can be ignored.)
For the on-line version, we immediately get optimal O(H(S)+1) average query cost,
with an O(m)-space data structure for a subdivision of size m. This on-line point
location result is already known [Arya et al. 2007a; Arya et al. 2007b; Collette et al.
2008; Iacono 2004] (some of these previous work even optimize the constant factor
in the query cost).

— On-line halfspace range reporting queries in 2-d and 3-d: Here, we map query lower
halfspaces to points by duality. The known data structure for (A) needs O(m) space
[Chazelle et al. 1985; Afshani and Chan 2009]. The data structure for (C) is the same
as in Section 5.1. We get optimal O(H(S) + 1 + κ) average query cost for output size
κ, with an O(m)-space data structure for a given point set of size m in 2-d or 3-d.
This result is new.

— On-line dominance reporting queries in 2-d and 3-d: The story is similar to halfspace
range reporting.

— On-line orthogonal range reporting/counting queries in 2-d: Here, we map query
rectangles to points in 4-d as in Section 5.1. The known data structure for (A) needs
O(m logm) preprocessing time and O(m) space [Chazelle 1988]. The data structure
for (C) is the same as in Section 5.1. We get optimal O(H(S) + 1 + κ) average query
cost for output size κ, with an O(m)-space data structure for a given point set of size
m in 2-d. (For counting, κ = O(1).) The resulting algorithm works in the comparison
model. This result is apparently new, as it extends Dujmović, Howat, and Morin’s re-
sult on 2-d dominance counting [Dujmović et al. 2009] and unintentionally answers

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Instance-Optimal Geometric Algorithms A:27

one of their main open problems (and at the same time improves their space bound
from O(m logm) to O(m)).

6. DISCUSSION

Although we have argued for the order-oblivious form of instance optimality, we are not
denigrating adaptive algorithms that exploit the order of the input. Indeed, for some
geometric applications, the input order may exhibit some sort of locality of reference
which can speed up algorithms. There are various parameters that one can define to
address this issue, but it is unclear how a unified theory of instance optimality can be
developed for order-dependent algorithms for, say, the convex hull problem.

We do not claim that the algorithms described here are the best in practice, be-
cause of possibly larger constant factors (especially those that use Matoušek’s parti-
tion trees), although some variations of the ideas might actually be useful. In some
sense, our results can be interpreted as a theoretical explanation for why heuristics
based on bounding boxes and BSP trees perform so well (e.g., see [Andrews et al. 1994]
on experimental results for the red/blue segment intersection problem).

Note that specializations of our techniques to 1-d also can lead to input order oblivi-
ous instance-optimal results for the multiset-sorting problem and the problem of com-
puting the intersection of two (unsorted) sets. Adaptive algorithms for similar 1-d prob-
lems (e.g., [Munro and Spira 1976]) were studied in settings different from ours.

Not all standard geometric problems admit nontrivial instance-optimal results in
the order-oblivious setting. For example, computing the Voronoi diagram of n points
or the trapezoidal decomposition of n disjoint line segments, both having Θ(n) sizes,
requires Ω(n logn) time for every point set by the naive information-theoretical ar-
gument. Computing the (L∞-)closest pair for a monochromatic point set requires
Ω(n logn) time for every point set by our adversary lower-bound argument.

An open problem is to strengthen our lower bound proofs to allow for a more gen-
eral class of test functions beyond multilinear functions, e.g., arbitrary fixed-degree
algebraic functions.

It remains to see how widely applicable the concept of instance optimality is. To
inspire further work, we mention the following geometric problems for which we cur-
rently are unable to obtain instance-optimal results: (a) reporting all intersections be-
tween a set of disjoint red (nonorthogona) line segments and a set of disjoint blue line
segments in 2-d; (b) computing the L2- or L∞-closest pair between a set of red points
and a set of blue points in 2-d; (c) computing the diameter or the width of a 2-d point
set; (d) computing the lower envelope of a set of (perhaps disjoint) line segments in 2-d.

Finally, we should mention that all our current results concern at most logarithmic-
factor improvements. Obtaining some form of instance-optimal results for problems
with ω(n logn) worst-case complexity (e.g., off-line triangular range searching, 3SUM-
hard problems, . . .) would be even more fascinating.

APPENDIX

A. ALTERNATIVE PROOF FOR 2-D MAXIMA

In this subsection, we describe an alternative proof of instance optimality for the 2-d
maxima problem. Here, we work with a measure of difficulty F(S), seemingly different
from the structural entropy H(S) defined previously. This definition appears simpler
in the sense that we do not need to take the minimum over all partitions but measure
the contribution of each point directly, but our analyses show as a byproduct that F(S)
is asymptotically equivalent to nH(S) (which is why we do not give it a name). Note
that this definition does not seem generalizable to 3-d maxima or other problems.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 P. Afshani et al.

q0

q4

q1

q2

q3

p1 p2 p3

p4 p5 p6

p7 p8 p9

Fig. 8. Definition of F(S): In this in-
stance the nodes p1, p2, p3 are dominated
by the 3 maxima points q1, q2, q3 of the in-
stance, so that F (p1)=F (p2)=F (p3)=S and
|F (p1)|=|F (p2)|=|F (p3)|=n=12. The maxima
point q1 is dominated only by itself, which domi-
nates 3 other points, so that |F (q1)|=4. The nodes
p4, p5, p6, q2 are dominated only by q2 which domi-
nates 7 points, so that |F (q2)|= · · ·=7, and similarly
|F (q3)|= · · ·=7. Finally, F(S) = 1 · log2

4

12
+ 3 ·

log2
12

12
+ 4 · log2

7

12
+ 4 · log2

7

12
= log2((

7

12
)8 + 1

3
).

Definition A.1. Given a point set S, let q1, . . . , qh denote the maximal points of S
from left to right. In order to simplify notation, consider the two additional virtual
points q0 and qh+1 respectively to the top left and bottom right of all other points, so
that they do not dominate any other point. Given a point p ∈ S, let qi, . . . , qℓ be all the
maximal points that dominate p. Define F (p) to be the subset of all points in S in the
slab (qi−1.x, qℓ+1.x)×R, where we use p.x and p.y to denote the x- and y-coordinates of
p. Define F(S) =

∑
p∈S log(n/|F (p)|).

Figure 8 illustrates the definition of F(S). The upper-bound proof is similar to our
earlier proof:

THEOREM A.2. The algorithm maxima from Section 2.1 runs in time within O(F(S))
on an instance S of n points.

PROOF. We proceed as in the proof of Theorem 2.3, but a simpler argument replaces
the second paragraph: Fix a point p ∈ S. Let qi, . . . , qℓ be all the maximal points that
dominate p. Fix a level j. If |F (p)| >

⌊
n/2j

⌋
, then (i) implies that some maximal point

from {qi, . . . , qℓ} must been discovered, and (ii) implies that p does not survive level j.
Thus, p can survive only for O(log(n/|F (p)|)) levels. We can bound the running time by
O(
∑

j nj) = O(
∑

p log(n/|F (p)|)).

For the lower-bound side, we first consider a slightly stronger problem which we call
maxima with witnesses: given a point set S, report all maximal points in left-to-right
order, and for each nonmaximal point p in S, report a maximal point (a witness) that
dominates p.

THEOREM A.3. OPT(S) ∈ Ω(F(S)) for the 2-d “maxima with witness” problem in
the comparison model.

PROOF. The proof is a counting argument, which we express in terms of encoding
schemes (see [Demaine and López-Ortiz 2003; Golynski 2009] for more sophisticated
examples of counting arguments based on encoding/decoding). We will describe a way
to encode an arbitrary permutation σ of S, so that the length of the encoding can be
upper-bounded in terms of the running time of the given algorithm A on input σ. Since
the worst-case encoding length must be at least log(n!), the running time must be large
for some permutation σ. (All logarithms are in base 2.)

To describe the encoding scheme, we imagine that the permutation σ is initially
unknown, and as we proceed, we record bits of information about σ so that at the end,
σ can be uniquely determined from these bits. In the description below, we distinguish
between an input point, as represented its index/position in the input permutation σ
(its actual location is not necessarily known), and an actual point in S, as represented
by its coordinates (its position in σ is not necessarily known). At any moment, if we

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Instance-Optimal Geometric Algorithms A:29

know which input point corresponds to an actual point p, we say (naturally) that p is
known.

We first simulate the algorithm on σ and record the outcome of the comparisons
made; this requires at most TA(S) bits4. Let M be the list of maximal input points
returned. For each input point qi, let W (qi) be the list of all nonmaximal input points
that have qi as witness. For each maximal actual point, we record its position in M ,
using at most h ⌈log h⌉ bits total. Now all maximal points are known.

We process the nonmaximal actual points of S from left to right, and make them
known as follows. To process an actual point p, let qi, . . . , qj be all the maximal points
that dominate p, which are all known. Observe that p must be in W (qi) ∪ · · · ∪W (qj).
Let L be all the points that are left of p, which are all known. We record the position
of p in the list W (qi) ∪ · · · ∪ W (qj) − L. This requires ⌈log(|W (qi) ∪ · · · ∪W (qj)− L|⌉
bits. Observe that W (qi) ∪ · · · ∪W (qj) is contained in (−∞, qj .x) × R. So, W (qi) ∪ · · · ∪
W (qj) − L is contained in the subset F (p) defined above—a lucky coincidence, valid
only in dimension 2. Thus, the number of bits required is at most ⌈log |F (p)|⌉. Now p is
known and we can continue the process.

The encoding has total length at most

TA(S) + h logh+
∑

p

log |F (p)|+O(n) ≤ TA(S) + h logh+ n logn−F(S) +O(n).

Hence, log(n!) ≤ TA(S) + h log h + n logn − F(S) + O(n), yielding TA(S) ∈ Ω(F(S) −
n − h logh). Combined with the trivial lower bound Ω(n) and the naive information-
theoretic lower bound TA(S) ∈ Ω(h log h) (as the problem definition requires the output
to be in sorted order), this implies that TA(S) ∈ Ω(F(S)).

Combining the above theorem with the following observation yields a complete proof
of the Ω(F(S)) lower bound:

Remark A.4. Any algorithm for the 2-d maxima problem in the comparison model
can be made to solve the 2-d “maxima with witnesses” problem without any further
comparisons on every input.

PROOF. Consider the partial order ≺x over S formed by the outcomes of the x-
comparisons made by the maxima algorithm. Define the partial order ≺y similarly.
Fix a nonmaximal point p. We show that there is a point q ∈ S such that p ≺x q and
p ≺y q. If not, we can modify the x- and y-coordinates, without violating any of the com-
parisons made, so that all points q with p 6≺x q now have p.x > q.x, and all points q with
p 6≺y q now have p.y > q.y. Then in the modified point set, p would now be a maximal
point, and the algorithm would be incorrect on the modified point set: a contradiction.

For every nonmaximal point p, we can thus find a witness point q that dominates p,
without making any further comparisons. One issue remains: the witness point may
not be maximal. If not, we can change p’s witness to the witness of the witness, and
repeat. At the end, all witnesses are maximal, and no new comparisons are made.

Remark A.5. The proof still works for the weaker problem where the algorithm
can report the maxima in arbitrary order, since by a similar observation, any such
algorithm already knows the x-order of the maxima without making any further com-
parisons.

This proof does not appear to work for problems besides 2-d maxima. One obvi-
ous issue is that Observation A.4 only applies to comparison-based algorithms for

4TA(S) is the maximum running time of A on input σ over all n! possible permutations σ of S, defined in
Definition 1.1 page 2.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30 P. Afshani et al.

nonorthogonal problems. Even more critically, however, the proof of Theorem A.3 relies
on a coincidence that is special to 2-d maxima.

Curiously, this lower-bound proof holds even for nondeterministic algorithms, i.e.,
algorithms that can make guesses but must verify that the answer is correct; here
we assume that each bit guessed costs unit time. In the proof of Theorem A.3, we just
record the guesses in the encoding. The previous proofs of instance optimality by Fagin
et al. [2003] and Demaine et al. [2000] all hold in the nondeterministic settings. Per-
haps this strength of the proof prevents its applicability to other geometric problems,
whereas our adversary-based proofs more powerfully exploits the deterministic nature
of the algorithms.

REFERENCES

Peyman Afshani and Timothy M. Chan. 2009. Optimal halfspace range reporting in three dimensions. In
Proc. 20th ACM-SIAM Symposium on Discrete Algorithms. SIAM, 180–186.

Pankaj K. Agarwal and Jeff Erickson. 1999. Geometric range searching and its relatives. In Advances in
Discrete and Computational Geometry, B. Chazelle, J. E. Goodman, and R. Pollack (Eds.). Contemporary
Mathematics, Vol. 223. American Mathematical Society, Providence, RI, 1–56.

Pankaj K. Agarwal and J. Matoušek. 1993. Ray shooting and parametric search. SIAM J. Comput. 22, 4
(1993), 794–806.

Nir Ailon, Bernard Chazelle, Seshadhri Comandur, and Ding Liu. 2006. Self-improving algorithms. In Proc.
17th ACM-SIAM Symposium on Discrete Algorithm. SIAM, 261–270.

D. S. Andrews, J. Snoeyink, J. Boritz, T. Chan, G. Denham, J. Harrison, and C. Zhu. 1994. Further com-
parisons of algorithms for geometric intersection problems. In In Proc. 6th International Symposium on
Spatial Data Handling. 709–724.

Sunil Arya, Theocharis Malamatos, and David M. Mount. 2007a. A simple entropy-based algorithm for
planar point location. ACM Transactions on Algorithms 3, 2 (2007), 17.

Sunil Arya, Theocharis Malamatos, David M. Mount, and Ka Chun Wong. 2007b. Optimal Expected-Case
Planar Point Location. SIAM J. Comput. 37, 2 (2007), 584–610.

Ilya Baran and Erik D. Demaine. 2005. Optimal Adaptive Algorithms for Finding the Nearest and Far-
thest Point on a Parametric Black-Box Curve. International Journal of Computational Geometry and
Applications 15, 4 (2005), 327–350.

Jérémy Barbay and Eric Chen. 2008. Adaptive Planar Convex Hull Algorithm for a Set of Convex Hulls. In
Proc. 20th Canadian Conference on Computational Geometry. 47–50.

Michael Ben-Or. 1983. Lower bounds for algebraic computation trees. In Proc. 15th ACM Symposium on
Theory of Computing. 80–86.

Jon Louis Bentley, Kenneth L. Clarkson, and David B. Levine. 1990. Fast Linear Expected-Time Algorithms
for Computing Maxima and Convex Hulls. In Proc. 1st ACM-SIAM Symposium on Discrete Algorithms.
SIAM, 179–187.

Binay K. Bhattacharya and Sandeep Sen. 1997. On a Simple, Practical, Optimal, Output-Sensitive Random-
ized Planar Convex Hull Algorithm. Journal of Algorithms 25, 1 (1997), 177–193.

Joan Boyar and Lene M. Favrholdt. 2007. The relative worst order ratio for online al-
gorithms. ACM Transactions on Algorithms 3, 2, Article 22 (May 2007), 22 pages.
DOI:http://dx.doi.org/10.1145/1240233.1240245

Timothy M. Chan. 1996a. Fixed-Dimensional Linear Programming Queries Made Easy. In Proc. 12th ACM
Symposium on Computational Geometry. 284–290.

Timothy M. Chan. 1996b. Optimal output-sensitive convex hull algorithms in two and three dimensions.
Discrete and Computational Geometry 16 (1996), 361–368.

Timothy M. Chan. 1996c. Output-Sensitive Results on Convex Hulls, Extreme Points, and R elated Prob-
lems. Discrete and Computational Geometry 16 (1996), 369–387.

T. M. Chan. 2000. Random sampling, halfspace range reporting, and construction of (≤ k)-levels in three
dimensions. SIAM J. Comput. 30 (2000), 561–575.

Timothy M. Chan. 2009. Comparison-based time–space lower bounds for selection. In Proc. 20th ACM-SIAM
Symposium on Discrete Algorithms. SIAM, 140–149.

Timothy M. Chan, Jack Snoeyink, and Chee-Keng Yap. 1997. Primal Dividing and Dual Pruning: Output-
Sensitive Construction of Four-Dimensional Polytopes and Three-Dimensional Voronoi Diagrams. Dis-
crete and Computational Geometry 18 (1997), 433–454.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Instance-Optimal Geometric Algorithms A:31

Bernard Chazelle. 1988. A functional approach to data structures and its use in multidi mensional searching.
SIAM J. Comput. 17, 3 (1988), 427–462.

Bernard Chazelle. 1991. Triangulating a Simple Polygon in Linear Time. Discrete and Computational Ge-
ometry 6 (1991), 485–524.

Bernard Chazelle, Herbert Edelsbrunner, Michelangelo Grigni, Leonidas J. Guibas, John Hershberger,
Micha Sharir, and Jack Snoeyink. 1994. Ray Shooting in Polygons Using Geodesic Triangulations. Al-
gorithmica 12(1) (1994), 54–68.

Bernard Chazelle, Leo J. Guibas, and D. T. Lee. 1985. The power of geometric duality. BIT 25, 1 (1985),
76–90. DOI:http://dx.doi.org/10.1007/BF01934990

Bernard Chazelle and Jiri Matoušek. 1995. Derandomizing an output-sensitive convex hull algorithm in
three dimensions. Computational Geometry: Theory and Applications 5 (1995), 27–32. Issue 1.

K. L. Clarkson. 1994. More output-sensitive geometric algorithms. In Proc. 35th IEEE Symposium on Foun-
dations of Computer Science. 695–702.

Kenneth L. Clarkson and C. Seshadhri. 2008. Self-improving algorithms for Delaunay triangulations. In
Proc. 24th ACM Symposium on Computational Geometry. 148–155.

K. L. Clarkson and P. W. Shor. 1989. Applications of random sampling in computational geometry, II. Dis-
crete and Computational Geometry 4 (1989), 387–421.

Sébastien Collette, Vida Dujmović, John Iacono, Stefan Langerman, and Pat Morin. 2008. Distribution-
sensitive point location in convex subdivisions. In Proc. 19th ACM-SIAM Symposium on Discrete Algo-
rithms. SIAM, 912–921. See also http://arxiv.org/abs/0901.1908.

Mark de Berg, Matthew Katz, A. Frank van der Stappen, and Jules Vleugels. 2002. Realistic input models
for geometric algorithms. Algorithmica 34 (2002), 81–97.

Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwarzkopf. 1997. Computational Geome-
try: Algorithms and Applications. Springer-Verlag.

Erik D. Demaine, Dion Harmon, John Iacono, Daniel Kane, and Mihai Pǎtraşcu. 2009. The Geometry of
Binary Search Trees. In Proc. 20th ACM-SIAM Symposium on Discrete Algorithms. SIAM, 496–505.

Erik D. Demaine and Alejandro López-Ortiz. 2003. A Linear Lower Bound on Index Size for Text Retrieval.
Journal of Algorithms 48, 1 (2003), 2–15.

Erik D. Demaine, Alejandro López-Ortiz, and J. Ian Munro. 2000. Adaptive set intersections, unions, and
differences. In Proc. 11th ACM-SIAM Symposium on Discrete Algorithms. SIAM, 743–752.

Vida Dujmović, John Howat, and Pat Morin. 2009. Biased range trees. In Proc. 20th ACM-SIAM Symposium
on Discrete Algorithms. SIAM, 486–495.

H. Edelsbrunner. 1987. Algorithms in Combinatorial Geometry. Springer-Verlag.

Herbert Edelsbrunner and Weiping Shi. 1990. An O(n log2 h) time algorithm for the three-dimensional
convex hull problem. SIAM J. Comput. 20, 2 (1990), 259–269.

Jeff Erickson. 2005. Dense point sets have sparse Delaunay triangulations. Discrete and Computational
Geometry 33 (2005), 83–115.

Ronald Fagin, Amnon Lotem, and Moni Naor. 2003. Optimal aggregation algorithms for middleware. J.
Comput. Syst. Sci. 66, 4 (2003), 614–656.

Alexander Golynski. 2009. Cell probe lower bounds for succinct data structures. In Proc. 20th ACM-SIAM
Symposium on Discrete Algorithms. SIAM, 625–634.

John Iacono. 2004. Expected asymptotically optimal planar point location. Computational Geometry: Theory
and Applications 29 (2004), 19–22. Issue 1.

N. Jones. 1997. Computability and Complexity: From a Programming Perspective. MIT Press.

Claire Kenyon. 1996. Best-Fit Bin-Packing with Random Order. In Proc. 7th ACM-SIAM Symposium on
Discrete Algorithms. SIAM, 359–364.

D. G. Kirkpatrick. 1983. Optimal search in planar subdivisions. SIAM J. Comput. 12, 1 (1983), 28–35.

David G. Kirkpatrick and Raimund Seidel. 1985. Output-size sensitive algorithms for finding maximal vec-
tors. In Proc. 1st ACM Symposium on Computational Geometry. 89–96.

David G. Kirkpatrick and Raimund Seidel. 1986. The Ultimate Planar Convex Hull Algorithm? SIAM J.
Comput. 15(1) (1986), 287–299.

Jiřı́ Matoušek. 2000. Derandomization in Computational Geometry. In Handbook of Computational Geome-
try, Jörg-Rüdiger Sack and Jorge Urrutia (Eds.). Elsevier Science Publishers B.V. North-Holland, Ams-
terdam, 559–595.

J. Matousek, J. Pach, Micha Sharir, Shmuel Sifrony, and Emo Welzl. 1994. Fat Triangles Determine Linearly
Many Holes. SIAM J. Comput. 23, 1 (1994), 154–169.

Jiri Matoušek. 1992. Efficient partition trees. Discrete and Computational Geometry 8, 3 (1992), 315–334.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32 P. Afshani et al.

Shlomo Moran, Marc Snir, and Udi Manber. 1985. Applications of Ramsey’s theorem to decision tree com-
plexity. J. ACM 32, 4 (1985), 938–949.

J. Ian Munro and Philip M. Spira. 1976. Sorting and Searching in Multisets. SIAM J. Comput. 5, 1 (1976),
1–8.

Franco P. Preparata and Michael I. Shamos. 1985. Computational Geometry: An Introduction. Springer-
Verlag.

Sandeep Sen and Neelima Gupta. 1999. Distribution-sensitive algorithms. Nordic Journal on Computing 6
(1999), 194–211.

J. Snoeyink. 1997. Point location. In Handbook of Discrete and Computational Geometry, Jacob E. Goodman
and Joseph O’Rourke (Eds.). CRC Press LLC, Boca Raton, FL, Chapter 30, 559–574.

R. Wenger. 1997. Randomized quickhull. Algorithmica 17 (1997), 322–329.

A. C.-C. Yao. 1981. A lower bound to finding convex hulls. J. ACM 28 (1981), 780–787.

Andrew Chi-Chih Yao. 1991. Lower Bounds for Algebraic Computation Trees with Integer Inputs. SIAM J.
Comput. 20, 4 (1991), 655–668.

F. Frances Yao, David P. Dobkin, Herbert Edelsbrunner, and Michael S. Paterson. 1989. Partitioning Space
for Range Queries. SIAM J. Comput. 18, 2 (1989), 371–384. DOI:http://dx.doi.org/10.1137/0218025

Received Month Year; revised Month Year; accepted Month Year

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

