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Chapter 2

Randomized Complexity

A deterministic algorithm is “a method of solution, by the application of a rule, a
finite number of times” (Chapter 1). This definition extends to probabilistic algorithms
by allowing probabilistic rules, or by giving a distribution of probability over a set of
deterministic algorithms. By definition, probabilistic algorithms are potentially more
powerful than their deterministic counterparts: the class of probabilistic algorithms
contains the class of deterministic algorithms. It is therefore natural to consider prob-
abilistic algorithms for solving the hardest combinatorial optimization problems, all
the more so because probabilistic algorithms are often simpler than their deterministic
counterparts.

A deterministic algorithm is correct if it solves each instance in a valid way. In
the context of probabilistic algorithms for which the execution depends both on the
instance and on the randomization of the algorithm, we consider the correct complex-
ity of algorithms for any instance and any randomization, but also the complexity of
algorithms such that for each instance I, the probability that the algorithm correctly
solves [ is higher than a constant (typically 1/2).

In the context of combinatorial optimization, we consider algorithms for which
the result approximates the solution of the problem set. We then examine both the
complexity of the algorithm and the quality of the approximations that it gives. We
can, without loss of generality, limit ourselves to the problems of minimizing a cost
function, in which case we look to minimize both the complexity of the algorithm and
the cost of the approximation that it produces. Depending on whether we examine the
complexity or the cost of the approximation generated, the terms are different but the
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22 Combinatorial Optimization 1

techniques are similar: in both cases, we are looking to minimize a measure of the
performance of the algorithm. This performance, for a probabilistic algorithm and a
given instance I, is defined as the average of the performance of the corresponding
deterministic algorithm on I.

The aim of this chapter is to show that the analysis techniques used to study the
complexity of probabilistic algorithms can be just as easily used to analyze the ap-
proximation quality of combinatorial optimization algorithms. In section 2.1, we give
a more formal definition of the concepts and notations generally used in the study
of the complexity of probabilistic algorithms, and we introduce a basic problem that
is used to illustrate the most simple results of this chapter. In section 2.2, we give
and prove the basic results that allow us to prove lower bounds for the performance
of probabilistic algorithms for a given problem. These results can often be used as
they stand, but it is important to understand their causes in order to adapt them to
less appropriate situations. The most common technique for proving an upper bound
to the performance of the best probabilistic algorithm for a given problem is to ana-
lyze the performance of the probabilistic algorithm, and for this purpose there are as
many techniques as there are algorithms: for this reason we do not describe a general
method, but instead give an example of analysis in section 2.3.

2.1. Deterministic and probabilistic algorithms

An algorithm is a method for solving a problem using a finite number of rule ap-
plications. In the computer science context, an algorithm is a precise description of
the stages to be run through in order to carry out a calculation or a specific task. A
deterministic algorithm is an algorithm such that the choice of each rule to be ap-
plied is deterministic. A probabilistic algorithm can be defined in a similar way by
a probabilistic distribution over the deterministic algorithms, or by giving a proba-
bilistic distribution over the rules of the algorithm. In both cases, the data received
by the algorithm make up the instance of the problem to be solved, and the choice of
algorithm or rules makes up the randomization of the execution.

Among deterministic algorithms, generally only the algorithms that always give
a correct answer are considered, whereas for probabilistic algorithms, algorithms that
may be incorrect are also considered, with some constraints. In the context of decision
problems, where the answer to each instance is Boolean (accepted or refused), we
consider “Monte Carlo” probabilistic algorithms [PAP 94, section 11.2] such that for
a fixed positive instance, the probability that the algorithm accepts the instance is at
least 1/2, and for a fixed negative instance, the algorithm always refuses the instance
(Whatever its randomization). This value of 1 /2 s arbitrary: any value ¢ that is strictly
positive is sufficient, since it is enough to repeat the algorithm & times independently
to reduce the probability that the algorithm accepts a negative instance to (1—e)*.

Randomized Complexity 23
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Figure 2.1. Complexity classes relative to probabilistic algorithms that run in polynomial time

Problems that can be solved using Monte Carlo algorithms running in polynomial
time make up the complexity class RP. Among these, problems that can be resolved by
deterministic algorithms running in polynomial time make up the complexity class P.
In a similar way, the class co-RP is made up of the set of problems that can be solved
in polynomial time by a probabilistic algorithm that always accepts a positive instance,
but refuses a negative instance with a probability of at least 1/2. If a problem is in
ZPP = RPNco-RP, it allows an algorithm of each kind, and so allows an algorithm
that is a combination of both, which always accepts positive instances and refuses
negative instances, but in an unlimited time. The execution time of algorithms of this
type can be random, but they always find a correct result. These algorithms are called
“Las Vegas”: their result is certain, but their execution time is random, a bit like a
martingale with a sufficiently large initial stake.

Another useful complexity class concerns probabilistic algorithms that can make
mistakes both by accepting and by refusing instances of the class BPP, formed by
problems that can be solved in polynomial time by a probabilistic algorithm refusing
a positive instance or accepting a negative instance with a probability of at most 1 /4.
Just as for RP, the value of 1/4 is arbitrary and can be replaced by 1/2 — p(n) for any
polynomial p(n) without losing the important properties of RP (but the value of 1/2
would not be suitable here, see [MOT 95, p. 22)).

Despite the fact that these complexity classes are generally defined in terms of
decision problems, they can equally well be used to order complexities of a larger
class of problems, such as research problems, or combinatorial problems [MOT 95,
p- 23].
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EXAMPLE — A classic problem is the bin-packing problem: given a list of objects of
heights L = {z.,.. ., Ty }, between 0 and 1, we must make vertical stacks of objects
in such a way that the height of each stack does not exceed 1, and such that there is
a minimum number of stacks. This problem is NP-complete and the approximation
of the optimal number 4 of stacks is a classic combinatorial optimization problem.
Even if it is not a decision problem, it can be categorized in the same classes. It
is enough to consider the following variant: given a list of the weights of objects
L = {z.,...,2,}, and a number of stacks M, can these n objects be organized
into M stacks, without any of them exceeding one unit of height? Any algorithm
approximating 4 by a value m such that Pr[m = p] > 3/4 (if need be by iterating
the same algorithm several times) allows us to decide whether M stacks will suffice
(m < M) without ever being wrong when M is not sufficient (M < p < m), and
with a probability of being wrong of at most 1 /4 if M is sufficient Prlp <m =
M] < 1/4): the decision problem is in RP!

2.1.1. Complexity of a Las Vegas algorithm

Given a cost function over the operations carried out by the algorithm, the com-
plexity of an algorithm A on an instance J is the sum of the costs of the instructions
corresponding to the execution of A on /. The algorithms solving this same problem
are compared by their complexity. The time complexity C(A, I) of an algorithm A on
an instance I corresponds to the number of instructions carried out by A when it is
executed to solve 7.

EXAMPLE.—

Figure 2.2. An instance of the hidden coin problem: one silver coin amongst four copper
coins, the coins being hidden by cards

The hidden coin problem is another abstract problem that we will use to illustrate
the different ideas of this chapter. We have a row of n, cards. Each card hides a coin,
which can be a copper coin or a silver coin. The hidden coin problem is to decide
whether the row contains at least one silver coin.

In this particular case, an algorithm must indicate which coins to uncover, and in
which order, depending on which type of coin is revealed. For such a simple problem,
we can limit the study to the algorithms that stop uncovering coins as soon as they
have discovered a silver coin: any coin uncovered after this would be superfluous.
Each of these algorithms is defined by the order ¢ in which it uncovers the coins as
long as there is no silver coin:
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— A deterministic algorithm uncovers coins in a fixed order.

— A potential algorithm chooses half of the coins randomly and uniformly, uncov-
ers them, accepts the instance if there is a silver coin, and otherwise refuses. This
algorithm always refuses an instance that does not contain a silver coin (therefore a
negative instance), and accepts any instance containing at least one silver coin (there-
fore positive) with a probability of at least 1/2: therefore it is a Monte Carlo algorithm.

— Another potential algorithm uncovers coins in a random order until it has found
a silver coin, or it has uncovered all of the coins: this algorithm always gives the right
answer, but the number of coins uncovered is a random variable that depends on the
chosen order: it is therefore a Las Vegas algorithm.

In a configuration that has only one silver coin hidden under the second card from
the right, the algorithm that uncovers coins from left to right will uncover n—1 coins,
the algorithm that uncovers coins from right to left will only uncover 2 coins.

Figure 2.3. The algorithm choosing coins from left to right: dotted lines show the possible
executions, and solid lines show the executions on this instance. The answer of the algorithm
is positive because the row contains a silver coin

Let /' = {I,...,I|p} be a finite set of instances, and A an algorithm for
these instances. The complexity C(A4, F) of A on F can be defined in several
ways. The set of values taken by the complexity of A on the instances of F is
{C(4,L),...,CA Ir)}:

— their maximum C(A, F) = maxser C(A, I) corresponds to the worst-case
complexity,

—and the average C(A, F) = ;. C(A, I)p(I) corresponds to the average
complexity according to a probability distribution p(I) on the instances.

EXAMPLE.— The worst-case complexity of the algorithm choosing the coins from left
to right is n.

The complexity of an algorithm on an infinite number of instances cannot be de-
fined in the same way: the number of values of complexity to be considered is poten-
tially infinite. To define this complexity, the set of instances is partitioned into subsets
of a finite cardinality indexed by N, for example the instances that can be coded in
n machine words, for any integer n. For any integer n, the complexity f(n) (in the
Wworst case, or on average) of the algorithm on the subset of index 7 is therefore well
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defined. The complexity C'(A) of the algorithm A on the problem is defined as the
function f which for each integer n connects f (n).

EXAMPLE.— The set of configurations is finite. For the hidden coin problem with n
coins, where n is fixed, algorithm 2.1 will uncover all n coins in the worst case: its
complexity in the worst case is therefore f(n) = n. Its average complexity on the
uniform distribution of the instances containing only one silver coin is (n + 1) /2.

Algorithm 2.1 Listing of the algorithm that uncovers coins from left to right
while there are still coins to uncover, and no silver coin has been found do
uncover the coin the furthest to the left that has not been uncovered already;
end while
if a silver coin has been uncovered then
answer positively
else
answer negatively.
end if

2.1.2. Probabilistic complexity of a problem

To prove a lower bound to the complexity of a problem, we must be able to con-
sider all the possible algorithms. To this end, the algorithms are represented in the
form of trees, where each node is an instruction, each branch is an execution, and each
leaf is a result: this is the decision tree model.

DEFINITION 2.1.— A questionnaire is a tree whose leaves are labeled by classes and
whose internal nodes are labeled by tests. If the test has k possible results, the internal
node has k threads, and the k arcs linking the node to its threads are labeled by these
results. The questionnaire allows us to decide to which class a given instance belongs.
The instance is subjected to a series of tests, Starting with the test contained in the root
node. Following the result of the test, the series of tests continues in the corresponding
sub-branch. If the sub-branch is a leaf, the label of this leaf is the class associated
with the instance.

DEFINITION 2.2.— A decision tree is a questionnaire where each internal node cor-
responds to a deterministic operation that can be executed on any instance in a finite
time.
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All deterministic algorithms ending in a finite time can be expressed as a decision
tree. Each leaf then corresponds to a possible result of the algorithm. The number
of operations carried out by the algorithm on this instance is thus the length of the
corresponding branch.

DEFINITION 2.3.— A comparison tree is a decision tree for which the tests are com-
parisons between internal elements of the instance.

Knuth [KNU 73] uses comparison trees to obtain a lower bound on the complexity
of comparison-based sorting algorithms. His analysis excludes algorithms such as
the sorting by counting algorithm, which directly access the values being sorted, and
hence are not in the comparison model.

Figure 2.4. A decision tree for the hidden coin problem when there are five coins

EXAMPLE.—~ Any decision tree corresponding to an algorithm for the hidden coin
problem must contain at least 7 + 1 leaves: one for each possible position for the first
silver coin uncovered, and one for the configuration not containing any silver coins.
Each test allows us to eliminate exactly one potential position for the silver coin. In
this particular case, any decision tree corresponds to a chain. Its height is equal to n.
The worst-case complexity of any algorithm for this problem is therefore Q(n).

The decision tree model only concerns deterministic algorithms. It can be extended
to probabilistic algorithms by distribution over deterministic decision trees.

DEFINITION 2.4.— For a fixed problem, a probabilistic algorithm is defined by a
distribution over deterministic algorithms. In the same way, a probabilistic decision
tree is a distribution over decision trees.

The complexity of a probabilistic algorithm R on an instance I is the average of
the complexities of the deterministic algorithms A on I according to the distribution
associated with R; C(R,I) = 3 , Pr{A}C(A, I).
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The model of probabilistic algorithms is more general than that of deterministic
algorithms, and allows better performances.

EXAMPLE .~ If an instance of the hidden coins problem contains n /2 silver coins and
1/2 copper coins, for each deterministic algorithm there is a confi guration of the coins
such that it uncovers n/2 coins before uncovering a silver coin. The probabilistic al-
gorithm choosing an order & of positions at random will possibly also uncover up to
n,/2 coins, but with a very low probability of 1/2 ™/* . For the worst instance contain-
ing n/2 silver coins and n /2 copper coins, the probabilistic algorithm will uncover
less than two coins on average: a lot less than a deterministic algorithm.

DEFINITION 2.5~ The probabilistic complexity of a problem is equal to the average
complexity of the best deterministic algorithm on the worst distribution.

The complexity of any probabilistic algorithm for a given problem gives an up-
per bound to the probabilistic complexity of this problem: an example is given in
section 2.3.1. Moreover, the minimax theorem allows us to obtain a lower bound
to the probabilistic complexity of a given problem: this is presented and proved in
section 2.2.

2.2. Lower bound technique

The minimax theorem is a fundamental theoretical tool in the study of probabilistic
complexity. It is presented in the context of game theory, in particular for games for
two players with a sum total of zero (games where the sum total of the winnings of
the two players is always equal to zero). The Yao principle applies this theorem in
the context of probabilistic algorithms; the first player applies the algorithm and the
second creates an instance in a way that maximizes the complexity of the algorithm:
this is related to the min—max algorithms (see Volume 2, Chapter 4).

2.2.1. Definitions and notations

LetI" be a zero sum game for two players Alice and Bernard such that:
—the sets A = {a.,q.,..., am}and B = {b. b., ... ,bn} of possible determin-
istic strategies for Alice and Bernard are finite;

— the winnings for Alice when she applies strategy a; and when Bernard applies
strategy b;, are denoted by the element M; ; of the matrix M.
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The set of probabilistic strategies (or mixed strategies) is denoted by .4 for Alif:e,
B for Bernard. These probabilistic strategies are obtained by combining the determin-
istic strategies (or pure strategies) according to a probability vector:

A= {a=(a,0.,...,a5,) € [0,1]™ such that P g =1
and the strategy a; is used with probability «; }

B= {8=(6,6,...,Bn) €[0,1]" such that Sy =1
and the strategy b, is used with probability 5, }

Of course, the pure strategies are included in the set of mixed strategies, as the prob-
ability vectors for which the full weight is on one component: a. corresponds tf) the
mixed strategy of the probability vector (1,0, ..., 0). A mixed strategy is a linear
combination of pure strategies: & = a. a. + a.a. + . .. + o as.

COMMENT 2.1.— The performance of a mixed strategy o for Alice against a mixed
strategy (3 for Bernard is calculated by the following formula:

aTMp = izaiMi,jﬁj
.i- . j- .

A couple of strategies (a*, 3*) is a Nash equilibrium of the game if, for all strate-
gies o and 3, aT M B* < a*TMﬁ* < a*TMﬂ. These configurations have the speci-
ficity that each player reduces his winnings if he is the only one to change. strategy.
For certain problems, there is a Nash equilibrium among the pure strategies. Von
Neumann’s minimax theorem shows that there is always a Nash equilibrium among
the mixed strategies. Loomis’s lemma shows that this equilibrium is attained by a
couple formed from a pure strategy and a mixed strategy. The Yao principl'e is a re-
formulation of the minimax theorem which shows that the average complexity of the
best deterministic algorithm over the worst distribution is the worst-case complfzxity
of the best probabilistic algorithm. These results are proved in the following sections.
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2.2.2. Minimax theorem

The minimax theorem is proved using the fixed point theorem, and lemmas 2. |
and 2.3. The lemmas are proved here; for the proof of the fixed point theorem, refer

LEMMA 2.1~ The existence of & and ,5’ Let ¢ and 1) be defined in R™ and R™ by:

¢(a) =supa” MB and y(8) = inf T Mp
,5 {e

Thus:
1) ¢(a) = maxg oT M B and ¥(8) = min, a7 MB.

2) There are mixed Strategies & for Alice and el Jor Bernard such thar @ reaches
its minimum in & and Y reaches its maximum in 8.

Proof. The first point follows on from the bilinearity of M. If o is fixed, the function
which associates a7 M 3 with B1is linear, and thus iscontinuous, and, B being compact,
it reaches its upper bound on B (theorem 29 in [SCH 81)): dla) = supg oM B =
maxg o M. The same logic applies to ).

To demonstrate this second point, it is sufficient to show that ¢ and ¢ are con-
tinuous: the existence of & and 0 is implied by the compactness of A and B. To
show the continuity of ¢ (the reasoning is equally valid for Y), let @ € A and
£ = (5.,5.,...,5m):

plate) = max(a + )" M8

< mgxaTM/.H- méingMﬂ

Il

#(a) + max eTMB.

ut for any norm |., leTMB| < el x [MB|. Since B is of finite dimension n, | M 3|
> finite, and [e7 M) tends towards zero when e[ tends towards zero. Therefore
Mg . (Pl +¢€) — $(@)) = 0, and ¢ is continuous in a. [ ]

The minimax theorem states that  min, maxz o MG s equal to
1axg min, o M 3. This is proved by showing a double inequality, the first of which
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is valid even for pure strategies. Lemma 2.2 below is the “easy” part of the minimax
theorem.

LEMMA 2.2 — Simple inequality.

minmaxa? M3 > mELX min o’ M3
a B a

Proof. Let & and ,@ be expressed by lemma 2.1:

- = " = s i
minmax o M =max &’ MB > atMp > IrgnaTMﬁ = mgxrrgna Mg
a B B

The lemma below is used to prove the minimax theorem.

LEMMA 2.3.— Minimax lemma. In the game I the following two conditions are
equivalent:
(1) ming maxg o M B = maxs min, o M3,
(i) There is a real number v and mixed strategies & and (3 such that:
a"Mb;<v Vi=1,2,...,n

a?Mﬁ}v Vi=1;2,...,m

Proof. (ii) = (i) Let us assume the existence of the real number v ar.ld I}l;xed strate-
gies & and (3 of (44): by the linearity of M, for all 8 € B, we obtain & Mg < v.

Therefore, in particular,
mgx aT M A<

which implies by the minimum definition, min, maxg o M3 < v. The same a%)plies
for B, v > maxg min, o’ M 3. So min, maxgaT MG < v < maxg min, o' Mg.
Moreover, lemma 2.2 implies the inverse inequality:

min max a? M8 > maxmin oTMp
e B B a

hence point (i).

(z) = (é) Let us assume that we have the equality (7). Letw = mina' maxg aTMB.
Using lemma 2.1, & € A exists such that maxg &7 Mj = v. By definition, V3 € B_
&M < v, and the inequality T M b; < v of (i7) is confirmed for all values of ;
from 1 to n. In the same way, there is a B € B such that min, o M B =, therc-elfor'e
Voo € AaT"MB > v, and as a consequence the inequality a] M3 < v of (i1) is
confirmed for all values of i from 1 to m. E



32 Combinatorial Optimization 1

The proof of the minimax theorem given here relies on Brouwer’s fixed point the-
orem.

THEOREM 2.1.— Brouwer’s fixed point [BOR 98, p- 112]. Let X be a compact and
convex set in R™. Any continuous function ¢ : X — X allows a fixed pointz € X
such that ¢(x) = z.

THEOREM 2.2~ von Neumann’s minimax theorem. The game T is defined by the
matrix M :
min max o M3 = max min oTMpB
o Jé) B e

Proof.  Given the mixed strategies of each player o and 3, let:

Pi = pi(a,f) = ofMB—oTMB Vi=1,....m
% = @loh) = oMB—aTMb; Vj=1,....n

Let the function ® be: A B — Ax B such that each couple (o, () matches the
couple of mixed strategies (¢, n) expressed by:

@; + max{p;, 0}
14> . max{py, 0}
ﬁ]' + ma'X{Qj7 0}
1+ Z,T . max{g,0}

\/izl,...,m 51:

The function @ is the sum of continuous functions: it is continuous. A and B are
compact and convex vector spaces. Hence theorem 2.1 implies that ® allows a fixed
point (&, 5). Let p; be considered at the point (&, 3): p; = pi(d,ﬁ) for all 7. We
have:

Zdipi = > ai(a? MB - aTMp)
= (Z@iai)TMB—(Zdi)dTMB

= a'MB-aTMj
0

The terms of a zero sum are either all zero, or include at least one negative and one
positive term:
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— If the terms are all zero, for all 7 &; = 0 or pi = 0. Let us assume p; # 0. From
the fixed point definition &; > . max{pg,0} = max{p;,0}: we have max(p;, 0) =
0and p; < 0. So p; < 0 forall 4.

—If not all the terms are zero, there is a strictly negative term &;p;. & being a
distribution of probability, &; is positive, which implies that p; is strictly negative.
From the fixed point definition, &; }"y. . max{ps, 0} = max{p;, 0}, which is zero
since p; < 0. The terms of the zero sum of positive terms max{py, 0} are all zero, so
pr < 0 forall k.

The g; are all shown to be negative or zero in a similar way. The point (i¢) of
lemma 2.3 is confirmed by noting that v = a7 M B, which proves the theorem. |

2.2.3. The Loomis lemma and the Yao principle

The Loomis lemma is the essential argument for extending the minimax theorem
to the Yao principle. The proof given here is the one given by Borodin and El-Yaniv
[BOR 98].

LEMMA 2.4~ The Loomis lemma [BOR 98, Lemma 8.2]. Given a fixed mixed strat-
egy o for Alice, there is an optimal deterministic strategy b; for Bernard when Alice

applies the strategy o:
max o MB = o Mb,

In the same way, given a fixed mixed strategy [3 for Bernard, there is an optimal
deterministic strategy a; for Alice when Bernard applies the strategy 3:

mina? M3 = aiTMﬁ

Proof. For a fixed o, o’ M is a linear function on B, and for this reason reaches its
maximum in at least one pure strategy b;, corresponding to a maximum coefficient of
o M. Therefore, maxg o7 M8 = oT M bj. The same reasoning holds for Bernard. I

The equality of the minimax theorem can be rewritten by applying the Loomis
lemma to optimal strategies & and 3

min max aTMbj = mﬂax minal Mj [2:1]
« J )

These game theory results are applied to the analysis of algorithmic complexity. Let
B be the finite set of instances of size s, B the set of random distributions over these
instances, A a finite set of deterministic algorithms that solve the problem for a fixed
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data size s, and A the set of probabilistic algorithms defined by a distribution of prob-
ability over A.

Thus o™ M b; is the average complexity of the probabilistic algorithm o € A over
the instance b; € B, and max; aT M b; is the average complexity of this algorithm
over the worst instance. Symmetrically, al M is the average complexity of the deter-
ministic algorithm a; € A over the distribution of instances 3 € B and maxg al M
is the complexity of this algorithm over the worst imaginable distribution of instances.

The following inequality, known as “Yao’s inequality”, is obtained by applying
this interpretation to equation [2. 1]. This inequality allows us to obtain lower bounds
to the complexity of probabilistic algorithms.

THEOREM 2.3.— Yao principle [YAO 77]. The complexity of the best deterministic
algorithm over the worst distribution of instances 3 € B is equal to the complexity of
the best probabilistic algorithm over the worst instance:

m[?x min azT M = min max aTszj
k2 o 9

This approach allows us to obtain lower bounds for finite sets of deterministic
algorithms over sets of finite instances. This is not a difficult bound to reach, for a
finite number of instances, once the size of the instance has been fixed. For example,
the computational model based on comparisons is reduced to the algorithms that do not
carry out the same comparison twice. The number of such algorithms is polynomial
in the number of elements to be compared. There is therefore a finite number of
algorithms on instances of fixed size.

COMMENT 2.2.— The fact that A and B are of a finite dimension is crucial in all the
extensions of the minimax principle [SIO 58].

EXAMPLE.— In the hidden coins problem, a single silver coin being uniformly hidden,
any deterministic algorithm uncovers an average of n/2 cards. The Yao principle

implies that the best Las Vegas algorithm uncovers on average n/2 cards for at least
one configuration.

This factor of = is not very important, but more important differences in perfor-
nance appear between deterministic and probabilistic algorithms when complexity is
nalyzed more closely.

“XAMPLE.~ In the hidden coin problem, if half the coins are silver, and if they are
venly distributed, the best deterministic algorithm uncovers [n,/2] coins in the worst
ase, while the best probabilistic algorithm uncovers less than 2 coins, on average, in
1€ WOrst instance.
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2.3. Elementary intersection problem

The analysis of the hidden coin problem can be adapted to other, less trivial prob-
lems, which can be decomposed as a conjunction of independen.t subprqblems. The
elementary intersection problem, which is relatively close to the hidden coins problem
used throughout this chapter, is given as an applied example.

Formally, an instance of the elementary intersection problem is made up of an ele-
ment z and & sorted tables, of respective sizes n. < ... < ng. The problem therefor'e
consists of deciding whether or not z belongs to the intersection of the taples, that- 18
whether there is a table that does not contain x. The analogy with the h1ddein.c01ns
problem can be seen if we make a copper coin correspond to the table.s containing ,
and a silver coin to the tables not containing . As for the hidden coin qublem, the
instance is harder if almost all the tables contain z, both for the determm%stlc and the
probabilistic algorithms, and a probabilistic algorithm will end more quickly than a
deterministic algorithm if only half the tables contain z.

We will show here how to obtain a lower bound on the complex.ity of the elemen-
tary intersection problem using the Yao principle, and how to obtain an upper bound
by analyzing a simple randomized algorithm.

2.3.1. Upper bound

The complexity of any probabilistic algorithm for a given problem.forms an upper
bound on the probabilistic complexity of this problem. Th§ 'boundvls all the l?ettt?r
since the complexity of the algorithm is reduced. By de.:ﬁmtlon., this com.plexny is
equal to the average of the complexities of the deterministic algorithms makln.g up the
probabilistic algorithm on a fixed worst instance: max; y, p;C(A;, I ) This corre-
sponds to the last example in section 2.1.2, in the case where half the coins are made

of silver.

To calculate this complexity, we draw upon the Yao principle, adapting the.rar?—
domization of the algorithm on the instance, in such a way as to define a worst distri-
bution of instances, from the worst instance: then the complexity in the worst case (?f
the probabilistic algorithm corresponds to the average complexity of a deterministic
algorithm over a worst distribution.

EXAMPLE.— In the example of the hidden coins problem, any probabilistic algorithm
can be defined as a distribution (p;)ic{. ... n.} Over the permutations of {1,...,n}.
For any instance I, and in particular for the worst instance, (pi)ie{.:.:_,,}.} deﬁn'es a
distribution over the permutations of /. The complexity of a Prc?bablllst.lc algonthrp
then corresponds to the average complexity of any deterministic algorithm on this
distribution.
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The complexity of any probabilistic algorithm that solves the elementary intersec-
tion problem forms an upper bound to the probabilistic complexity of the problem.

Let us consider a deterministic algorithm that is looking for element z in each
table using the dichotomous search algorithm. The cost of the search, in numbers of
comparisons in a table of n; elements, is O(logn;). Thus this type of deterministic
algorithm carries out at most O(Zf . log n;) comparisons.

Therefore, the probabilistic complexity of the elementary intersection problem of
an instance of signature (k,ne,..., ng) must be less than or equal to, give or take a
multiplicative constant, Zf . log n;. We will show that this upper bound corresponds
to the upper bound, and that therefore this deterministic algorithm is optimal amongst

all the deterministic or probabilistic algorithms that solve the elementary intersection
problem.

2.3.2. Lower bound

To prove a lower bound on the worst-case complexity of any deterministic al-
gorithm, it is sufficient to define an opponent’s strategy, which constructs, for each
deterministic algorithm, its worst instance. Such a method provides a lower bound of
Zf . logn;, which proves that the type of algorithm described in the previous sec-
tion is optimal among the deterministic algorithms, but does not prove anything about
probabilistic algorithms.

To prove a lower bound on the worst-case complexity of any probabilistic algo-
rithm, we use the Yao principle, which allows us to obtain this bound from a worst
distribution for all the deterministic algorithms. The following lemma defines such a
worst distribution.

LEMMA 2.5.— For any set of integers k > 1, n. ... s > 0, there is a distribution
of instances (z, A. ,. . ., Ay) of signature (k, n. s+ +» k) Such that any deterministic
algorithm that decides whether z is in the intersection A. N ... N Ay, carries out on
average at least Q(Zf . logn;) comparisons.

The distribution is defined by choosing a table A,, where z may be absent with
probability logn;/ 3" log n; for each table Aj; for each other table, we choose a po-
sition where = may be placed with probability 1/n; for each table A;. Any algorithm
looking for z will find it in k& /2 tables on average before finding the table A,, that does
10t contain z, and will carry out, in each of these tables, on average Q(Zf . logn,)
-omparisons. The rigorous proof of the lower bound is not relevant to us, and is given
Isewhere [BAR 08].

By directly applying the Yao principle we obtain the desired lower bound.
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THEOREM 2.4.— For any set of integers k > 1, n.,...,n; > 0, and for any prqb—
abilistic algorithm A that solves the elementary intersection problem, there is an in-
stance (z, A., ..., Ay) of signature (k,n. ..., ny) such that A carries out on aver-

age at least Q(Zf . logn;) comparisons on the instance (z, A. ,. . ., Ag).

The probabilistic complexity of the elementary intersection problem is therefore
greater than or equal to Zf . log n;, give or take a multiplicative constant.

2.3.3. Probabilistic complexity

The previous results give lower and upper bounds on the probabilistic complexity
accurate to one multiplicative constant. This is sufficient to know the order of mag-
nitude of the probabilistic complexity of the elementary intersection problem, and to
prove that the type of deterministic algorithm proposed in section 2.3.1 is optimal.

2.4. Conclusion

The analysis of probabilistic algorithms is not generally considered as combinato-
rial optimization, while heuristics, particular probabilistic algorithms, are often essen-
tial to solve NP-difficult problems, and in particular for optimization problems. This
is certainly because in practice it is difficult to analyze the algorithms used, and rare
to be able to prove close lower and upper bounds. Let us hope that this chapter helps
to bridge the gap between the theoretical analysis of probabilistic complexity and the
study of heuristics.

2.5. Bibliography
[BAR 08] BARBAY J., KENYON C., “Alternation and redundancy analysis of the intersection
problem”, ACM Trans. Algorithms, vol. 4, num. 1, p- 1-18, 2008.

[BOR 98] BORODIN A., EL-YANIV R., Online Computation and Competitive Analysis, Cam-
bridge University Press, Cambridge, 1998.

[KNU 73] KNUTH D.E., The Art of Computer Programming, vol. 3: Sorting and Searching,
Addison-Wesley, Reading, MA, 1973.

[MOT 95] MOTWANI R., RAGHAVAN P., Randomized Algorithms, Cambridge University
Press, New York, 1995.



38  Combinatorial Optimization 1

[PAP 94] PAPADIMITRIOU C.H -» Computational Complexity, Addison-Wesley, Reading, MA,
1994.

[SCH 81] SCHWARTZ L., Cours d’analyse, Hermann, Paris, 1981.

[SIO 58] S1ONM., “On general Minimax theorems”, Pacific Journal of Mathematics, p. 171-
176, 1958.

PART II

[YAO 771 Yao A.C., “Probabilistic computations: Toward a unified measure of complexity”,
Proc. FOCS’77, p. 222-227,1977.

Classical Solution Methods






