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al Report CS-2007-20Abstra
t. An adaptive algorithm is one whi
h performan
e 
an be expressed more pre
isely thanas a mere fun
tion of the size of the input: output-sensitive algorithms are a spe
ial 
ase of adaptivealgorithms. We 
onsider the 
omputation of the 
onvex hull of a set of 
onvex hulls, for instan
e in the
ase where the set of points has been 
omposed from simpler obje
ts from a library, for ea
h of whi
hthe 
onvex hull has been pre
omputed. We show that in this 
ontext an adaptive algorithm performsbetter if it takes advantage of other features than the size of the output.Keywords: Computational geometry; Convex hulls; Adaptive Algorithm1 Introdu
tionAdaptive algorithms are algorithms that take advantage of �easy� instan
es of the problem at hand,i.e. their 
omplexity depends on some measure of di�
ulty, for example a fun
tion of the size of theinstan
e and of other parameters.For example, sorting an array A of numbers is a basi
 problem, where some instan
es are easierthan others to sort (e.g. a sorted array, whi
h 
an be 
he
ked/sorted in linear time). Consideringthe disorder in an array as a measure of the di�
ulty of sorting this array [3, 11℄, one 
an yield a�ner analysis of the 
omplexity of the problem. There are many ways to measure this disorder: one
an 
onsider the number of ex
hanges required to sort an array; the number of adja
ent ex
hangesrequired; the number of pairs (i, j) in the wrong order, but there are many others [14℄. For ea
hdisorder measure, the logarithm of the number of instan
es with a �xed size and a �xed number ofdisorder pairs forms a natural lower bound to the worst 
ase 
omplexity of any sorting algorithm inthe 
omparison model, as a 
orre
t algorithm must at least be able to distinguish all instan
es. As a
onsequen
e, there 
ould be as many optimal algorithms as the di�
ulty measures. Indeed, one 
anredu
e di�
ulty measures between themselves, whi
h yields a hierar
hy of disorder measures [9℄.A parti
ular 
ase of this approa
h has been applied to some fundamental problems in
omputational geometry, su
h as 
onvex hull problems, interse
tion-reporting of line segments [7℄.where algorithms said to be �output-sensitive� are analyzed under the assumption that the sizeof the output measures the di�
ulty of ea
h instan
e. For example, Kirkpatri
k and Seidel [10℄proposed an algorithm for 
omputing the 
onvex hull that has running time O(n log h), where n isthe number of input verti
es, and h is the number of output verti
es in the resulting 
onvex hull.It was later simpli�ed by Chan [4℄. As previously known algorithms guarantee only a running timeof O(n log n) in the worst 
ase, 
learly, the adaptive algorithm performs better when the size of the
onvex hull size is small (e.g. a triangle).



Can we �nd an even �ner measurement and outperform output-sensitive algorithms? In thispaper, we fo
us on improving the 
omputation of the 
onvex hull in the 
ase where the set of pointsis 
omposed of a few simpler obje
ts (i.e. k < n) for whi
h the 
onvex hull has been pre
omputed(e.g. an appli
ation 
ombining pie
es from a library of me
hani
al pie
es to obtain more 
omplexobje
ts). Let I = {H1, . . . ,Hk} be a set of k 
onvex hulls in the Eu
lidian plane, respe
tively
omposed of n1, . . . , nk points ea
h, all distin
t and non-
ollinear. We 
ompute the minimal 
onvexhull 
ontaining every point of I.We des
ribe adaptive algorithms whi
h take optimally advantage of the relative positions of theobje
ts 
omposing I, output the shortest possible des
ription of the 
onvex hull from the input, andwrite the result in a write-only stream, using working storage of O(k) words, independent of theinput size n.The asymptoti
 performan
e of our adaptive algorithms is never worse than the performan
eof traditional or output-sensitive algorithms: their performan
e is O(n log h) in the worst 
ase overinstan
es of input size n and output size h, and hen
e O(n log n) in the worst 
ase over instan
esof input size n. In parti
ular, our adaptive algorithms perform better than any output-sensitivealgorithm on instan
es of large output size whi
h solution 
an be shortly des
ribed and 
erti�ed.In this paper, we des
ribe an algorithm, the adaptive analysis of its 
omplexity and the mat
hingadaptive 
omputational lower bound, all in the planar 
omparison model where only point-to-pointand point-to-line 
omparisons are allowed. Our algorithm (Se
tion 2) 
omputes the 
onvex hull ofan instan
e I formed of k 
onvex upper hulls. We here only des
ribe the algorithm to 
omputethe upper hull of a set of upper hulls. The lower hull 
an be 
omputed symmetri
ally. To 
omputethe 
onvex hull, we 
an 
ompute the upper hull and lower hull separately, and then merge themtogether. The analysis of this algorithm introdu
es the notion of the 
erti�
ate of an instan
e, whi
his essential in both the proof of 
orre
tness and the 
omplexity analysis of our algorithms: thisnotion is similar in essen
e to the one used of the 
ombination of sorted sets in one dimension [1, 8℄.The adaptive 
omputational lower bound (Se
tion 3) shows that the worst 
ase 
omplexity of ouralgorithms over instan
es of �xed input size n, k and di�
ulty δ is optimal.2 Convex Hull Problem2.1 Notion of Certi�
ateBefore we des
ribe our algorithms, we introdu
e the 
on
ept of the 
erti�
ate for an instan
e.Given two upper hulls, in some 
ir
umstan
e, the merged hull is easier to 
ompute. For example,two horizontally disjoint upper hulls 
an be merged in O(log(n1)+ log(n2)) time [10℄, where n1 and
n2 are the size of the two upper hulls respe
tively. There are even easier 
ases: if all the points ofthe �rst upper hull are 
ontained in the trun
ated 
one formed by the �rst and last edges of these
ond upper hull, then no point from the �rst upper hull will 
ontribute to the 
onvex union. Insu
h a 
ase, the upper hull 
an be 
omputed in 
onstant time.By one assertion, we verify whether a point is above a line. Given two upper hulls, the mergedhull 
an be 
erti�ed by a set of su
h assertions. We 
all one set of su
h assertions a 
erti�
ate.De�nition 1. Given k sorted upper hulls H1, . . . ,Hk represented by arrays of points A1, . . . , Akof respe
tive sizes n1, . . . , nk and their 
onvex hull H, expressed as several intervals on the arrays
A1, . . . , Ak. A 
erti�
ate of H is a set of assertions of the type �Ai[p] is above1 the line (Aj [q], Aj [k])�,1 In the 
lo
kwise orientation. 2



su
h that the 
onvex hull of any instan
e satisfying those assertions is given by the des
ription of H.The size of a 
erti�
ate is the number of assertions 
ontained in it.we also note that su
h a 
erti�
ate not only justify the presen
e of ea
h point in the output, butalso justify the ex
lusion of the other points.It not hard to see that all those easier 
ases showed at the beginning of this se
tion have a
erti�
ate with small size, whi
h indi
ates the size of the 
erti�
ate is a good measurement of thedi�
ulty of an instan
e. Alternatively, the so-
alled 
onvolution 
an also be used as a measure ofthe di�
ulty.De�nition 2. A sli
ing of the instan
e is a partition (Ij)j∈[δ] of the domain of the x-
oordinatessu
h that, for ea
h interval Ij of the partition, the part of the upper hull interse
ting Ij 
an be
erti�ed in k − 1 
omparisons. The minimal size of a sli
ing of the instan
e measures the di�
ultyto 
ertify this instan
e: we 
all it the 
onvolution of the instan
e.2.2 Basi
 OperationsComputing the 2D 
onvex hulls is 
onsidered as a natural extension of sorting problems. To 
omputethe merged hull (/em 
onvex union) of upper hulls is at on
e similar and distin
t from 
omputingthe union and interse
tion of sorted arrays [8℄:� Whereas when 
omputing the union of k sorted arrays the union of ea
h pair of arrays matter,when 
omputing the 
onvex union of sorted upper hulls the interleaving from the lowest upperhulls 
an be ignored.� Whereas when 
omputing the interse
tion of k sorted upper hulls, only two arrays need to be
onsidered if their interse
tion is empty, all the upper hulls need to be 
onsidered at least on
eto 
ompute their 
onvex union.The analogy enables us to adapt some known te
hniques from 1D adaptive algorithms and alsoenlightens us to design some new basi
 operations for our new adaptive algorithms. We presentthem by in
reasing order of importan
e.Eliminator Line The main similarity between the 
onvex union of upper hulls and the interse
tionof sorted arrays is that in some 
ases a large se
tion of one of the k 
omponents of the instan
e(sorted arrays for the interse
tion problem, sorted upper hulls here) 
an be eliminated by a simpleoperation.Observation 1 Given a line l and an upper hull U , if the point U [p] is below l and the slope of
U [p]U [p + 1] is smaller than l, then all points right to U [p] is below l; if the point U [p] is below land the slope of U [p − 1]U [p] is greater than l, then all points left to U [p] is below l.Doubling Sear
h Another similarity between algorithms 
omputing the union of sorted arraysand the various �wrapping� algorithms 
omputing the 
onvex union of upper hulls, is that they both
ompute the result from �left to right�. In this 
ontext, it is not ne
essary to perform a binary sear
hfor the insertion rank of a value (resp. for the tangent of a point) every time on the whole array(resp. on the whole sorted upper hull) at ea
h sear
h: a doubling sear
h [2℄ algorithm permits toamortize the sum of ea
h sear
h over the whole stru
ture:3



Lemma 1. There is a deterministi
 algorithm in the 
omparison model whi
h de
ides if there is anedge [cp, cp+1] in an ordered upper hull c1, . . . , cn whi
h interse
ts a line of (a, b), and �nds it if itexists, in O(log p) 
omparisons.Proof. This is simply a doubling sear
h [2℄ on the x-
oordinate of the points of the upper hull,performed in 2 log(p) operations. ⊓⊔Lemma 2. The tangent (x, cp) of a point x with an ordered upper hull c1, . . . , cn 
an be found in
O(log p) 
omparisons.Proof. The tangent 
an be found using a doubling sear
h algorithm [2℄ on the angle between (x, ci)and (ci, ci+1) in 2 log(i) operations. ⊓⊔Using these results yields a minor improvement of the �wrapping� algorithm proposed by Chan [4℄to 
ompute the 
onvex union of upper hulls.Hull to hull tangents While the gift-wrapping algorithm 
an take advantage of various featuresof the instan
es whi
h make them easier, it is still performing in super-linear time to the size of theupper hulls. In the simple 
ase of two side by side upper hulls, of respe
tive sizes n1 and n2, thereis a 
erti�
ate of 
onstant size, and as it 
an be solved in O(log n1 + log n2 + h) time, where h isonly required to output the result: Kirpatri
k and Seidel [10℄ showed that, if the n1 points of a �rstupper hull are on the left of the n2 points of a se
ond upper hull, then the 
onvex union of the twoupper hulls 
an be 
omputed in O(log(n1) + log(n2)) time. Their algorithm is based on the sear
hfor a tangent of the two upper hulls, i.e. a line whi
h tou
hes ea
h hull at a single point [13℄ (insteadof zero or two, as most lines do). A slight modi�
ation of their algorithm makes it adaptive in theposition of the point of the tangent in the se
ond hull:Lemma 3. Given upper hulls A and B, ea
h represented in the 
lo
kwise order in an array, withrespe
tive sizes m and n, su
h that all the points of A are at the left of all the points of B, thetangent (A[i], B[j]) from A to B 
an be 
omputed in time O(log i + log j).Proof. This is just an adaptive variant of the original algorithm from Kirpatri
k and Seidel [10℄,performing a doubling sear
h [2℄ on both hulls instead of mere binary sear
hes. ⊓⊔2.3 Adaptive Convex Hull AlgorithmTheorem 2. There is a deterministi
 algorithm in the 
omparison model whi
h 
omputes the 
onvexunion for an instan
e of 
onvolution δ 
omposed of k sorted upper hulls of respe
tive sizes n1, . . . , nkin O(δ

∑
log(ni/δ)) 
omparisons, whi
h is also in O(δk log(n/δk)).Proof (sket
h). Consider Algorithm 1: after identifying the �rst point a of the 
onvex hull A,it iteratively 
omputes the tangent of a with any other hull using Lemma 2, and 
omputes theinterse
tion of these tangents with A using Lemma 1. Ea
h of those tangents yields either an ar
on whi
h A does not interse
t the 
on
erned hull, so that some points of this hull are 
erti�ed notto 
ontribute to the 
onvex hull; or a bridge from A to this hull, su
h that some points from A are
erti�ed not to 
ontribute to the 
onvex hull.We prove the 
orre
tness of the algorithm by indu
tion. Consider one iteration of the outer loop.The following invariant is kept: After ea
h iteration, A is on the merged hull. In the base 
ase, a isthe �rst point on the merged hull, thus the invariant is kept.In the indu
tion step, we have two possible 
ases:4



Algorithm 1 Convex Upper Hull algorithmIdentify the starting point a (from Hull A) of the 
onvex union;repeatfor ea
h other hull B do
ompute the tangent from a to B, tou
hing B at band the rightmost interse
tion a′ of (a, b) with A;if the segment ab does not 
ut A (i.e. a′ is right of b) then// B does not 
ut A in the slide [a, a′]ignore further the points left of a′ in B;memorize (a, b)'s slope;else// B 
uts A exa
tly on
e in the sli
e [a, a′]
ompute the bridge [c, d] between the points from a to a′ in A and the points right of b in B;memorize the slope of this bridge;ignore further the prede
essors of d in B;end ifend forif the highest slope s 
orresponds to at least one bridge thenoutput and further ignore points of A left of d;swit
h (a,A) to (d, B);elseupdate a to the last point of A of higher slope than s(but don't ignore its prede
essors);end ifuntil no point is left in any hull� The highest slope s 
orresponds to the bridge between A and B. At the end of the iteration, ais the �rst point of the 
urrent hull and on the merged hull. Therefore, the invariant is kept.� The highest slope s 
orresponds to the ar
 with the highest slope. In this 
ase, any other hullis below this ar
. Sin
e a is the last point on A above this ar
, a is on the merged hull. Theinvariant is kept. ⊓⊔3 Adaptive Computational Lower BoundIn the previous se
tion we proved that our algorithm performs better than a naive algorithm onmany instan
es. To 
omplete this result, we prove that our algorithm takes optimally advantageof the easiness of the instan
es as measured by our di�
ulty measure. For that we show that norandomized algorithm 
an perform better than our deterministi
 algorithm, in the worst 
ase overinstan
es of �xed size and di�
ulty, asymptoti
ally in both the size and the di�
ulty of the instan
e.The main work is done in Lemma 4, whi
h de�nes a probability distribution whi
h is �bad� for anydeterministi
 algorithm. Theorem 3 merely translates the 
orresponding lower bound into a lowerbound on the worst 
ase performan
e of any randomized algorithm, through a dire
t appli
ation ofthe Yao prin
iple [15℄.Lemma 4. For any �xed value of k, n1, . . . , nk, δ, there is a probability distribution over instan
esof 
onvolution δ 
omposed of k sorted upper hulls of respe
tive sizes (n1, . . . , nk) su
h that any(deterministi
 or) randomized algorithm 
omputing the sorted 
onvex hull of these instan
es performs
Ω(δ

∑
log(ni/δ)) 
omparisons on average. Also, under similar 
onditions ex
ept that the totalnumber of points n of the instan
e is �xed (instead of the sizes (n1, . . . , nk) of ea
h obje
t 
omposing5



the instan
e), there is a probability distribution over instan
es mat
hing the 
riteria su
h that Aperforms Ω(δk log(n/δk)) 
omparisons on average.Proof (sket
h). The proof pro
eeds in two steps: �rst we de�ne a distribution over �elementary�instan
es of arbitrary size but small di�
ulty, then we show how to 
ombine them to formdistribution over instan
es of arbitrary size and di�
ulty, by 
ombining several elementary instan
es.In our 
ontext, an �elementary� instan
e is an instan
e of 
onvolution 1. We de�ne a distributionover elementary instan
es 
omposed of k of respe
tive sizes (n1, . . . , nk) (resp. of total size n), su
hthat any deterministi
 algorithm performs Ω(k) sear
hes on average, 
orresponding to an average
ost of Ω(
∑k

i=2 log(ni)) 
omparisons.We show how to 
ombine δ elementary instan
es 
omposed of k hulls of respe
tive sizes
n1/δ, . . . , nk/δ (resp. of total size n/δ) into a larger instan
e 
omposed of sorted upper hulls ofrespe
tive sizes (n1, . . . , nk) (resp. of total size n) and of 
onvolution δ, su
h that any algorithmsolving this instan
e has to solve ea
h of the elementary instan
e 
omposing it. Applying this
ombination to elementary instan
es randomly drawn from the probability distribution des
ribedabove yields a distribution over instan
es of desired size and 
onvolution, for
ing any deterministi
algorithm to perform Ω(δ

∑
log(ni/δ)) 
omparisons (resp. Ω(δk log(n/δk)) 
omparisons) onaverage. ⊓⊔Theorem 3. For any �xed value of k, n1, . . . , nk, δ, and for any (deterministi
 or) randomizedalgorithm A 
omputing the sorted 
onvex hull of sorted upper hulls, there is an instan
e of
onvolution δ 
omposed of k sorted upper hulls of respe
tive sizes n1, . . . , nk su
h that A performs

Ω(δ
∑

log(ni/δ)) 
omparisons on it. Also, under similar 
onditions ex
ept that the total numberof points n of the instan
e is �xed (instead of the sizes (n1, . . . , nk) of ea
h obje
t 
omposingthe instan
e), there is an instan
e mat
hing the 
riteria su
h that A performs Ω(δk log(n/δk))
omparisons on it.Proof. Applying the minmax theorem [12℄ from game theory, the Yao prin
iple [15℄ states thatthe average 
omplexity of the best deterministi
 algorithm on the worst probability distribution ofinstan
es is equal to the worst 
ase 
omplexity of the best randomized algorithm. Applying thisprin
iple to Lemma 4 dire
tly yields the two results. ⊓⊔4 Con
lusionVery large set of points for whi
h a 
onvex hull is required will not appear �out of nowhere�:most likely, they will be formed of several obje
ts from a library, for whi
h a 
onvex hull 
an bepre
omputed. In this 
ontext, we have given an algorithm to 
ompute the 
onvex hull of a setof 
onvex hulls whi
h outputs a des
ription of the 
onvex hull in a write-only streams, use littleworking spa
e, and take advantage of instan
es where the relative positions of the obje
ts makesthe 
onvex hull easier to 
ompute. While those improvements do not 
hange the 
omplexity of thealgorithm in the worst 
ase over instan
es of �xed input and output size, they 
hange the 
omplexityof many instan
es whi
h are likely to happen in pra
ti
e, and whi
h we formally identify throughthe de�nition of the 
erti�
ate of an instan
e, and of a measure of the di�
ulty of the instan
e.Our te
hniques 
an be applied to 
ompute the interse
tion of 
onvex upper hulls [5℄ (and hen
e theinterse
tion of any 
onvex obje
t), the union of 
onvex upper hulls (and hen
e the 
ontour of theunion of any set of 
onvex obje
ts), and the intermediate relaxations of those problems: given k6




onvex planar upper hulls and a parameter t ≤ k, what is the region 
overed by at least t 
onvexplanar upper hulls? Clearly this is the interse
tion for t = k and the union for t = 1: this relaxationtruly generalizes its equivalent on sorted sets in one dimension [1℄.As the basi
 operations are 
learly identi�ed in ea
h algorithm, our results are easily generalizableto the transdi
hotomous 
omputational model as well: ea
h of the basi
 operation 
an be supportedin time O(log n/ log log n) using a pre
omputed index [6℄.The ideas presented in this paper also apply to other problems, su
h as the di�eren
e of 
onvexobje
ts, or some more arti�
ial relaxation between the union and the 
onvex hull, de�ned on themodel of our relaxation between the interse
tion and the 
ontour of the union. The 
on
ept of
erti�
ate is easily generalized to higher dimensions, but whereas in the plane the 
hoi
e of the bestbridge between two hulls is well de�ned, this 
hoi
e is not well de�ned even in three dimensions.Hen
e, the generalisation of our approa
h to three dimensions (and above) is still an open problem.A �rst goal would be to perform an adaptive analysis of the two base 
ases: the 
onvex hull of twototally disjoint 
onvex polytopes, and of the 
erti�
ation that one 
onvex polytope is totally in
ludedin another. Algorithms are known for both, but it is not 
lear how to analize them adaptively.At a more general level, we showed that in the same way as the output-sensitive analysis is�ner than the typi
al worst 
ase analysis over instan
es of �xed size; an even �ner analysis 
an beperformed for some problems in 
omputational geometry, in order to yield further improvementsover algorithms suggested by the output-sensitive analysis.A
knowledgements: Many thanks to Alejandro López-Ortiz for suggesting this dire
tion ofresear
h, and to Timothy Chan and Alejandro Salinger for pointing to previous works. This workwas supported by a dis
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