Adaptive Planar Convex Hull Algorithm
for a Set of Convex Hulls

Jérémy Barbay and Eric Y. Chen

Cheriton School of Computer Science
University of Waterloo, Canada.
{jbarbay, y28chen}Quwaterloo.ca

Technical Report CS-2007-20

Abstract. An adaptive algorithm is one which performance can be expressed more precisely than
as a mere function of the size of the input: output-sensitive algorithms are a special case of adaptive
algorithms. We consider the computation of the convex hull of a set of convex hulls; for instance in the
case where the set of points has been composed from simpler objects from a library, for each of which
the convex hull has been precomputed. We show that in this context an adaptive algorithm performs
better if it takes advantage of other features than the size of the output.

Keywords: Computational geometry; Convex hulls; Adaptive Algorithm

1 Introduction

Adaptive algorithms are algorithms that take advantage of “easy” instances of the problem at hand,
i.e. their complexity depends on some measure of difficulty, for example a function of the size of the
instance and of other parameters.

For example, sorting an array A of numbers is a basic problem, where some instances are easier
than others to sort (e.g. a sorted array, which can be checked/sorted in linear time). Considering
the disorder in an array as a measure of the difficulty of sorting this array [3, 11|, one can yield a
finer analysis of the complexity of the problem. There are many ways to measure this disorder: one
can consider the number of exchanges required to sort an array; the number of adjacent exchanges
required; the number of pairs (7,7) in the wrong order, but there are many others [14]|. For each
disorder measure, the logarithm of the number of instances with a fixed size and a fixed number of
disorder pairs forms a natural lower bound to the worst case complexity of any sorting algorithm in
the comparison model, as a correct algorithm must at least be able to distinguish all instances. As a
consequence, there could be as many optimal algorithms as the difficulty measures. Indeed, one can
reduce difficulty measures between themselves, which yields a hierarchy of disorder measures [9].

A particular case of this approach has been applied to some fundamental problems in
computational geometry, such as convex hull problems, intersection-reporting of line segments |7].
where algorithms said to be “output-sensitive” are analyzed under the assumption that the size
of the output measures the difficulty of each instance. For example, Kirkpatrick and Seidel [10]
proposed an algorithm for computing the convex hull that has running time O(nlog h), where n is
the number of input vertices, and h is the number of output vertices in the resulting convex hull.
It was later simplified by Chan [4]. As previously known algorithms guarantee only a running time
of O(nlogn) in the worst case, clearly, the adaptive algorithm performs better when the size of the
convex hull size is small (e.g. a triangle).

Can we find an even finer measurement and outperform output-sensitive algorithms? In this
paper, we focus on improving the computation of the convex hull in the case where the set of points
is composed of a few simpler objects (i.e. k& < n) for which the convex hull has been precomputed
(e.g. an application combining pieces from a library of mechanical pieces to obtain more complex
objects). Let I = {Hy,...,H} be a set of k convex hulls in the Euclidian plane, respectively
composed of ny,...,ng points each, all distinct and non-collinear. We compute the minimal convex
hull containing every point of I.

We describe adaptive algorithms which take optimally advantage of the relative positions of the
objects composing I, output the shortest possible description of the convex hull from the input, and
write the result in a write-only stream, using working storage of O(k) words, independent of the
input size n.

The asymptotic performance of our adaptive algorithms is never worse than the performance
of traditional or output-sensitive algorithms: their performance is O(nlog h) in the worst case over
instances of input size n and output size h, and hence O(nlogn) in the worst case over instances
of input size n. In particular, our adaptive algorithms perform better than any output-sensitive
algorithm on instances of large output size which solution can be shortly described and certified.

In this paper, we describe an algorithm, the adaptive analysis of its complexity and the matching
adaptive computational lower bound, all in the planar comparison model where only point-to-point
and point-to-line comparisons are allowed. Our algorithm (Section 2) computes the convex hull of
an instance I formed of k convex upper hulls. We here only describe the algorithm to compute
the upper hull of a set of upper hulls. The lower hull can be computed symmetrically. To compute
the convex hull, we can compute the upper hull and lower hull separately, and then merge them
together. The analysis of this algorithm introduces the notion of the certificate of an instance, which
is essential in both the proof of correctness and the complexity analysis of our algorithms: this
notion is similar in essence to the one used of the combination of sorted sets in one dimension [1, §|.
The adaptive computational lower bound (Section 3) shows that the worst case complexity of our
algorithms over instances of fixed input size n, k and difficulty § is optimal.

2 Convex Hull Problem

2.1 Notion of Certificate

Before we describe our algorithms, we introduce the concept of the certificate for an instance.

Given two upper hulls, in some circumstance, the merged hull is easier to compute. For example,
two horizontally disjoint upper hulls can be merged in O(log(n1) +log(nz)) time [10], where n; and
ng are the size of the two upper hulls respectively. There are even easier cases: if all the points of
the first upper hull are contained in the truncated cone formed by the first and last edges of the
second upper hull, then no point from the first upper hull will contribute to the convex union. In
such a case, the upper hull can be computed in constant time.

By one assertion, we verify whether a point is above a line. Given two upper hulls, the merged
hull can be certified by a set of such assertions. We call one set of such assertions a certificate.

Definition 1. Given k sorted upper hulls Hy,..., Hy represented by arrays of points Aq,..., Ag
of respective sizes ni,...,ng and their convex hull H, expressed as several intervals on the arrays
Aq,..., Ag. A certificate of H is a set of assertions of the type “A;[p] is above® the line (A;]q], A;[k])”,

! In the clockwise orientation.

such that the convex hull of any instance satisfying those assertions is given by the description of H.
The size of a certificate is the number of assertions contained in it.

we also note that such a certificate not only justify the presence of each point in the output, but
also justify the exclusion of the other points.

It not hard to see that all those easier cases showed at the beginning of this section have a
certificate with small size, which indicates the size of the certificate is a good measurement of the
difficulty of an instance. Alternatively, the so-called convolution can also be used as a measure of
the difficulty.

Definition 2. A slicing of the instance is a partition (Ij)je[é] of the domain of the x-coordinates
such that, for each interval I; of the partition, the part of the upper hull intersecting I; can be
certified in k — 1 comparisons. The minimal size of a slicing of the instance measures the difficulty
to certify this instance: we call it the convolution of the instance.

2.2 Basic Operations

Computing the 2D convex hulls is considered as a natural extension of sorting problems. To compute
the merged hull (/em convex union) of upper hulls is at once similar and distinct from computing
the union and intersection of sorted arrays |§|:

— Whereas when computing the union of k sorted arrays the union of each pair of arrays matter,
when computing the convex union of sorted upper hulls the interleaving from the lowest upper
hulls can be ignored.

— Whereas when computing the intersection of k£ sorted upper hulls, only two arrays need to be
considered if their intersection is empty, all the upper hulls need to be considered at least once
to compute their convex union.

The analogy enables us to adapt some known techniques from 1D adaptive algorithms and also
enlightens us to design some new basic operations for our new adaptive algorithms. We present
them by increasing order of importance.

Eliminator Line The main similarity between the convex union of upper hulls and the intersection
of sorted arrays is that in some cases a large section of one of the & components of the instance
(sorted arrays for the intersection problem, sorted upper hulls here) can be eliminated by a simple
operation.

Observation 1 Given a line | and an upper hull U, if the point Ulp| is below | and the slope of
Up|U[p + 1] is smaller than 1, then all points right to Ulp] is below I; if the point Ulp] is below [
and the slope of Ulp — 1|U|p] is greater than [, then all points left to Ulp] is below .

Doubling Search Another similarity between algorithms computing the union of sorted arrays
and the various “wrapping” algorithms computing the convex union of upper hulls, is that they both
compute the result from “left to right”. In this context, it is not necessary to perform a binary search
for the insertion rank of a value (resp. for the tangent of a point) every time on the whole array
(resp. on the whole sorted upper hull) at each search: a doubling search [2] algorithm permits to
amortize the sum of each search over the whole structure:

Lemma 1. There is a deterministic algorithm in the comparison model which decides if there is an
edge [cp, cpt1] in an ordered upper hull ¢y, ..., ¢, which intersects a line of (a,b), and finds it if it
ezists, in O(logp) comparisons.

Proof. This is simply a doubling search [2| on the z-coordinate of the points of the upper hull,
performed in 2log(p) operations. O

Lemma 2. The tangent (z,c,) of a point x with an ordered upper hull ci1,...,c, can be found in
O(logp) comparisons.

Proof. The tangent can be found using a doubling search algorithm [2] on the angle between (z, ¢;)
and (¢;,ci+1) in 2log(i) operations. O

Using these results yields a minor improvement of the “wrapping” algorithm proposed by Chan [4]
to compute the convex union of upper hulls.

Hull to hull tangents While the gift-wrapping algorithm can take advantage of various features
of the instances which make them easier, it is still performing in super-linear time to the size of the
upper hulls. In the simple case of two side by side upper hulls, of respective sizes n; and ns, there
is a certificate of constant size, and as it can be solved in O(logn; + logns + h) time, where h is
only required to output the result: Kirpatrick and Seidel [10] showed that, if the ny points of a first
upper hull are on the left of the ny points of a second upper hull, then the convex union of the two
upper hulls can be computed in O(log(ny) + log(ng)) time. Their algorithm is based on the search
for a tangent of the two upper hulls, i.e. a line which touches each hull at a single point [13] (instead
of zero or two, as most lines do). A slight modification of their algorithm makes it adaptive in the
position of the point of the tangent in the second hull:

Lemma 3. Given upper hulls A and B, each represented in the clockwise order in an array, with
respective sizes m and n, such that all the points of A are at the left of all the points of B, the
tangent (Ali], B[j]) from A to B can be computed in time O(logi + log j).

Proof. This is just an adaptive variant of the original algorithm from Kirpatrick and Seidel [10],
performing a doubling search [2] on both hulls instead of mere binary searches. O

2.3 Adaptive Convex Hull Algorithm

Theorem 2. There is a deterministic algorithm in the comparison model which computes the convex
union for an instance of convolution § composed of k sorted upper hulls of respective sizes ny,...,ng

in O(0 > log(n;/0)) comparisons, which is also in O(5klog(n/dk)).

Proof (sketch). Consider Algorithm 1: after identifying the first point a of the convex hull A,
it iteratively computes the tangent of a with any other hull using Lemma 2, and computes the
intersection of these tangents with A using Lemma 1. Each of those tangents yields either an arc
on which A does not intersect the concerned hull, so that some points of this hull are certified not
to contribute to the convex hull; or a bridge from A to this hull, such that some points from A are
certified not to contribute to the convex hull.

We prove the correctness of the algorithm by induction. Consider one iteration of the outer loop.
The following invariant is kept: After each iteration, A is on the merged hull. In the base case, a is
the first point on the merged hull, thus the invariant is kept.

In the induction step, we have two possible cases:

Algorithm 1 Convex Upper Hull algorithm

Identify the starting point a (from Hull A) of the convex union;
repeat
for each other hull B do
compute the tangent from a to B, touching B at b
and the rightmost intersection a’ of (a,b) with A4;
if the segment ab does not cut A (i.e. a’ is right of b) then
// B does not cut A in the slide [a,a’]
ignore further the points left of @’ in B;
memorize (a,b)’s slope;
else
// B cuts A exactly once in the slice [a, a']
compute the bridge [c, d] between the points from a to a’ in A and the points right of b in B;
memorize the slope of this bridge;
ignore further the predecessors of d in B;
end if
end for
if the highest slope s corresponds to at least one bridge then
output and further ignore points of A left of d;
switch (a, A) to (d, B);
else
update a to the last point of A of higher slope than s
(but don’t ignore its predecessors);
end if
until no point is left in any hull

— The highest slope s corresponds to the bridge between A and B. At the end of the iteration, a
is the first point of the current hull and on the merged hull. Therefore, the invariant is kept.

— The highest slope s corresponds to the arc with the highest slope. In this case, any other hull
is below this arc. Since a is the last point on A above this arc, a is on the merged hull. The
invariant is kept. a

3 Adaptive Computational Lower Bound

In the previous section we proved that our algorithm performs better than a naive algorithm on
many instances. To complete this result, we prove that our algorithm takes optimally advantage
of the easiness of the instances as measured by our difficulty measure. For that we show that no
randomized algorithm can perform better than our deterministic algorithm, in the worst case over
instances of fixed size and difficulty, asymptotically in both the size and the difficulty of the instance.

The main work is done in Lemma 4, which defines a probability distribution which is “bad” for any
deterministic algorithm. Theorem 3 merely translates the corresponding lower bound into a lower
bound on the worst case performance of any randomized algorithm, through a direct application of
the Yao principle [15].

Lemma 4. For any fized value of k,nq,...,ng, 8, there is a probability distribution over instances
of convolution & composed of k sorted upper hulls of respective sizes (ni,...,ng) such that any
(deterministic or) randomized algorithm computing the sorted convex hull of these instances performs
2(6> log(ni/d)) comparisons on average. Also, under similar conditions except that the total
number of points n of the instance is fized (instead of the sizes (n1,...,ny) of each object composing

the instance), there is a probability distribution over instances matching the criteria such that A
performs §2(0klog(n/dk)) comparisons on average.

Proof (sketch). The proof proceeds in two steps: first we define a distribution over “elementary”
instances of arbitrary size but small difficulty, then we show how to combine them to form
distribution over instances of arbitrary size and difficulty, by combining several elementary instances.

In our context, an “elementary” instance is an instance of convolution 1. We define a distribution
over elementary instances composed of k of respective sizes (ny,...,ny) (resp. of total size n), such
that any deterministic algorithm performs (2(k) searches on average, corresponding to an average
cost of Q(Z?:2 log(n;)) comparisons.

We show how to combine § elementary instances composed of k hulls of respective sizes
n1/d,...,nk/d (resp. of total size n/d) into a larger instance composed of sorted upper hulls of
respective sizes (nqy,...,ng) (resp. of total size n) and of convolution §, such that any algorithm
solving this instance has to solve each of the elementary instance composing it. Applying this
combination to elementary instances randomly drawn from the probability distribution described
above yields a distribution over instances of desired size and convolution, forcing any deterministic
algorithm to perform (2(8) log(n;/d)) comparisons (resp. §2(dklog(n/dk)) comparisons) on
average. O

Theorem 3. For any fized value of k,nq,...,ng,0, and for any (deterministic or) randomized
algorithm A computing the sorted convex hull of sorted upper hulls, there is an instance of
convolution & composed of k sorted upper hulls of respective sizes nq,...,ng such that A performs
(6> log(n;/d)) comparisons on it. Also, under similar conditions except that the total number
of points m of the instance is fized (instead of the sizes (ni,...,ni) of each object composing
the instance), there is an instance matching the criteria such that A performs 2(0klog(n/dk))
comparisons on it.

Proof. Applying the minmax theorem [12]| from game theory, the Yao principle [15] states that
the average complexity of the best deterministic algorithm on the worst probability distribution of
instances is equal to the worst case complexity of the best randomized algorithm. Applying this
principle to Lemma 4 directly yields the two results. O

4 Conclusion

Very large set of points for which a convex hull is required will not appear “out of nowhere™
most likely, they will be formed of several objects from a library, for which a convex hull can be
precomputed. In this context, we have given an algorithm to compute the convex hull of a set
of convex hulls which outputs a description of the convex hull in a write-only streams, use little
working space, and take advantage of instances where the relative positions of the objects makes
the convex hull easier to compute. While those improvements do not change the complexity of the
algorithm in the worst case over instances of fixed input and output size, they change the complexity
of many instances which are likely to happen in practice, and which we formally identify through
the definition of the certificate of an instance, and of a measure of the difficulty of the instance.
Our techniques can be applied to compute the intersection of convex upper hulls [5] (and hence the
intersection of any convex object), the union of convex upper hulls (and hence the contour of the
union of any set of convex objects), and the intermediate relaxations of those problems: given k

convex planar upper hulls and a parameter ¢ < k, what is the region covered by at least ¢ convex
planar upper hulls? Clearly this is the intersection for ¢ = k and the union for ¢ = 1: this relaxation
truly generalizes its equivalent on sorted sets in one dimension [1].

As the basic operations are clearly identified in each algorithm, our results are easily generalizable
to the transdichotomous computational model as well: each of the basic operation can be supported
in time O(logn/loglogn) using a precomputed index [6].

The ideas presented in this paper also apply to other problems, such as the difference of convex
objects, or some more artificial relaxation between the union and the convex hull, defined on the
model of our relaxation between the intersection and the contour of the union. The concept of
certificate is easily generalized to higher dimensions, but whereas in the plane the choice of the best
bridge between two hulls is well defined, this choice is not well defined even in three dimensions.
Hence, the generalisation of our approach to three dimensions (and above) is still an open problem.
A first goal would be to perform an adaptive analysis of the two base cases: the convex hull of two
totally disjoint convex polytopes, and of the certification that one convex polytope is totally included
in another. Algorithms are known for both, but it is not clear how to analize them adaptively.

At a more general level, we showed that in the same way as the output-sensitive analysis is
finer than the typical worst case analysis over instances of fixed size; an even finer analysis can be
performed for some problems in computational geometry, in order to yield further improvements
over algorithms suggested by the output-sensitive analysis.

Acknowledgements: Many thanks to Alejandro Lopez-Ortiz for suggesting this direction of
research, and to Timothy Chan and Alejandro Salinger for pointing to previous works. This work
was supported by a discovery grant from NSERC.

1]

2|
13l
4]
5]

6]

7l
8]

19]
[10]
[11]
[12]

[13]
[14]

[15]

Bibliography

J. Barbay and C. Kenyon. Adaptive intersection and t-threshold problems. In Proceedings of
the 13th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 390-399. Society for
Industrial and Applied Mathematics (STAM), 2002.

J. L. Bentley and A. C.-C. Yao. An almost optimal algorithm for unbounded searching.
Information processing letters, 5(3):82 87, 1976.

W. H. Burge. Sorting, trees, and measures of order. Information and Control, 1(3):181-197,
1958.

T. M. Chan. Optimal output-sensitive convex hull algorithms in two and three dimensions.
GEOMETRY: Discrete & Computational Geometry, 16, 1996.

T. M. Chan. Deterministic algorithms for 2-d convex programming and 3-d online linear
programming. In SODA: ACM-SIAM Symposium on Discrete Algorithms (A Conference on
Theoretical and Ezperimental Analysis of Discrete Algorithms), 1997.

T. M. Chan. Point location in o(log n) time, voronoi diagrams in o(n log n) time, and
other transdichotomous results in computational geometry. In Proc. 47th IEEE Symposium
on Foundations of Computer Science (FOCS), pages 333-342, 2006.

M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry,
Algorithms and Applications. Springer, 1997.

E. D. Demaine, A. Loépez-Ortiz, and J. I. Munro. Adaptive set intersections, unions, and
differences. In Proceedings of the 11th ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 743 752, 2000.

V. Estivill-Castro and D. Wood. A survey of adaptive sorting algorithms. ACM Computing
Surveys, 24(4):441-476, 1992.

D. G. Kirkpatrick and R. Seidel. The ultimate planar convex hull algorithm? SIAM J. Comput.,
1986. 15(1):287-299.

H. Mannila. Measures of presortedness and optimal sorting algorithms. IEEE Trans.
Computers, 34(4):318-325, 1985.

J. V. Neumann and O. Morgenstern. Theory of games and economic behavior. 1st ed. Princeton
University Press, 1944.

J. O’'Rourke. Computational Geometry in C. Cambridge University Press, 1994.

O. Petersson and A. Moffat. A framework for adaptive sorting. Discrete Applied Mathematics,
59(2):153 179, 1995.

A. C. Yao. Probabilistic computations: Toward a unified measure of complexity. In Proc. 18th
IEEE Symposium on Foundations of Computer Science (FOCS), pages 222-227, 1977.

