
Suint Data Strutures,Adaptive (analysis of) Algorithms:Overview, Combination, and PerspetiveJérémy BarbayTehnial Report CS-2007-33, Cheriton Shool of Computer Siene, University of Waterloo, Canada.Abstrat. Suint data strutures replae stati instanes of pointer based data strutures, improvingperformane in both time and spae in the word RAM model (a restrition of the RAM model where thesize of eah mahine-word is bounded). The adaptive analysis of algorithms onsiders the omplexity ina �ner way than merely grouping the instanes by size, yielding more preise lower and upper boundson the omplexity of a problem. We give a quik overview of those two tehniques, some brief examplesof how they an be ombined on various searh problems to obtain near optimal solutions, and somegeneral perspetive on the development and appliation of those tehniques to other problems and inunder di�erent models. The slides orresponding to this abstrat are available at the following address:http://www.s.uwaterloo.a/∼jbarbay/Reherhe/Publishing/Letures/suintAdaptive_handout.pdf.1 IntrodutionA suint data struture for a given abstrat data type is a representation that uses an amount of spae�lose� to the information theoreti lower bound of the underlying ombinatorial objet together, along withalgorithms that supports the operations of the abstrat data type �e�iently�. A natural example is therepresentation of a binary tree [22℄: an arbitrary binary tree on n nodes an be represented in 2n + o(n)bits while supporting a variety of operations on any node, whih inlude �nding its parent, its left or righthild, and returning the size of its subtree, eah in onstant time. As there are (

2n
n

)

/(n + 1) binary treeson n nodes and the logarithm of this term1 is 2n − o(n), the spae used by this representation is optimalto within a lower order term. Preproessing suh data-strutures so as to be able to perform searhes is aomplex proess requiring a variety of subordinate strutures, whih we review here.Adaptive algorithms are algorithms that take advantage of �easy� instanes of the problem at hand, i.e.their omplexity depends on some measure of di�ulty, for example a funtion of the size of the instaneand of other parameters. For example, Kirkpatrik and Seidel [24℄ proposed an algorithm for omputing theonvex hull that has omplexity O(n lg h), where n is the number of input verties, and h is the number ofoutput verties in the resulting onvex hull. As previously known algorithms guarantee only a running timeof O(n lg n) in the worst ase, learly, the adaptive algorithm performs better when the size of the onvexhull size is small (e.g. a triangle).We desribe the fundamental priniples of those two tehniques and we illustrate them by a seletionof results, respetively in Setion 2 and 3. We desribe in Setion 4 how they an be ombined on varioussearh problems to obtain solutions near from non-deterministi optimality, and some perspetive of researhonerning those tehniques.2 Suint Data Strutures2.1 Bit VetorsJaobson introdued the onept of suint data strutures enoding bit vetors [22℄ and supportinge�iently some basi operators on it, as a onstruting blok for other data-strutures, suh as tree strutures1 All logarithms are taken to the base 2. By onvention, lg lg x is noted llg x and lg lg lg x is noted lllg x.



and planar graphs. Given a bit vetorB[0, . . . , n−1], a bit α ∈ {0, 1}, an objet x ∈ [n] = {0, . . . , n−1} and aninteger r ∈ {1, . . . , n}, the operator bin_rankB(α, x) returns the number of ourrenes of α in B[0, ..., x−1],and the operator bin_selectB(α, r) returns the position of the r-th label α in B (we omit the subsript Bwhen it is lear from the ontext). To illustrate these operators, onsider the bit vetor � 0 0 0 1 0 0 0 1 0 0 �on the binary alphabet. Counting the number of 1-bits among the six �rst bits orresponds to the operation
bin_rank(1, 6) = 1, while searhing for the seond 1-bit orresponds to the operation bin_select(1, 2) = 7.Those operators an be supported on a bit vetor of length n in onstant time in the Θ(lg n)-word RAMmodel, using an index of n llg n

lg n + O( n
lg n ) additional bits [17℄, whih is asymptotially negligible (i.e. it is

o(n)) ompared to the n bits required to enode the bit vetor itself, in the worst ase over all bit vetors of
n bits. As the index is separated from the enoding of the binary string, the results holds even if the binarystring has exatly v bits set to one and is ompressed to lg

(

n
v

) bits, as long as the enoding supports inonstant time the aess to a mahine word of the string [30℄. The spae used by the resulting data-struturesis optimal up to asymptotially negligible terms among the enodings keeping the index separated from theenoding of the binary string [17℄. Obtaining the same lower bound or a better enoding in the general aseis still open.2.2 Ordinal Trees and Planar GraphsAn ordinal tree is a rooted tree in whih the hildren of a node are ordered and spei�ed by their rank.The basi operators on ordinal trees are child(x, i), the i-th hild of node x for i ≥ 1; childrank(x), thenumber of siblings preeding x in preorder; leveled_ancestor(x, i), the i-th anestor of node x (x is itsown 0-th anestor); depth(x), the number of anestors of x; nbdesc(x), the number of desendants of x;and degree(x), the number of hildren of x; tree_rankpre/post/dfuds(x), the position of node x in the giventree-traversal; tree_selectpre/post/dfuds(r), the r-th node in the given tree-traversal.Several tehniques permit to enode ordinal trees while supporting various sets of basi operators inonstant time in the Θ(lg n)-word RAM model, using the fat that ordinal trees are in bijetion with stringsof well balaned parenthesis [27℄; using a sequene of node degrees [7℄; or using a reursive deomposition ofthe tree [15℄.The most general enoding [15℄ supports all those operators in onstant time (in the Θ(lg n)-word RAMmodel) while enoding an ordinal tree of n nodes and its index using a total of 2n + o(n) bits, whih isasymptotially tight with the lower bound suggested by information theory, and better than traditionalsolutions (suh as using 2n lg n bits and supporting a subset of the navigation operators in onstant timethrough pointers). One again, the spae used by the resulting data-strutures is optimal up to asymptotiallynegligible terms among the data-strutures keeping the index separated from the enoding of the binarystring. It is possible to obtain a better enoding in the general ase [19℄, but obtaining a lower bound for thegeneral ase is an open problem.The design of suint enodings for planar graphs supporting navigation operators is similar, using thefat that planar graphs an be deomposed in a �nite number of ordinal trees, through a book embedding [8℄or through realizers [11, 12℄; or deomposed reursively in a similar ways to trees [10℄.2.3 Permutations and FuntionsA basi building blok for the strutures desribed below is the representation of a permutation of the integers
{0, . . . , n−1}, again denoted by [n]. The basi operators on a permutation are the image of a number i throughthe permutation, through its inverse or through the k-th power of it (i.e. π iteratively applied k times startingat i, where k an be any integer so that π−1 is the inverse of π).A straightforward array of n words enode a permutation π and supports the appliation of π1 in onstanttime. An additional index omposed of n/t shortuts [16℄ utting the largest yles of π in loops of less than
t elements supports the inverse permutation π−1 in at most t word-aesses. Using suh an enoding forthe permutation mapping a permutation π to one of its yli representation, one an also support theappliation of πk(i) in at most t word-aesses, with the same spae onstraints [26℄. Those results extend to2



funtions on �nite sets [28℄ by a simple ombination with the tree enodings desribed above, and the spaeused by the resulting data-strutures is optimal up to asymptotially negligible terms [18℄.2.4 StringsAnother basi abstrat data type is the string, omposed of n haraters taken from an alphabet of arbitrarysize σ (as opposed to binary for the bit vetor). The basi operations on a string are to aess it, and tosearh and ount the ourrenes of a pattern, suh as a simple harater from [σ] in the simplest ase [21℄.Formally, for any harater α, position x in the string and positive integer r, it orresponds to the operators
string_access(x), the x-th harater of the string; string_rank(α, x), the number of α-ourrenes beforeposition x; and string_select(α, r), the position of the r-th α-ourrene.Golynski et al. [20℄ showed how to enode a string of lenght n over the alphabet [σ] via n/σ permutationsover [σ], and how to support the string operators using the operators on those permutations. Choosing avalue of t = lg σ in the enoding of the permutation yields an enoding using n

(

lg σ+o(lg σ)
) bits in order tosupport the operators in at most O(llg σ) word aesses. Observing that the enoding of permutations alreadyseparates the data from the index, Barbay et al. [4℄ properly separated the data and the index of strings,yielding a suint index using the same spae and supporting the operators in O(llg σ lllg σ(f(n, σ)+ llg σ))word aess, where eah word of the data an be aessed in O(f(n, σ)) word aesses. Although thissupporting time is slightly larger than for the suint enoding (O(llg σ lllg σ) instead of O(llg σ) with anenoding of the data supporting onstant time aess), this suint index has the advantage of removing anyrestritions on the enoding of the data of the string (hene allowing ompression, among other advantages).The spae used by the resulting data-strutures is optimal up to asymptotially negligible terms, among allpossible suint indexes [18℄. A lower bound on suint enodings is still an open problem.2.5 Binary RelationsGiven two ordered sets of sizes σ and n, represented by [σ] and [n], a binary relation R between these sets isa subset of their Cartesian produt, i.e. R ⊂ [σ]×[n]. In some appliations, it represents the relation betweena set of labels [σ] (e.g. keywords entered by users in onjuntive queries) and a set of objets [n] (e.g. webpages indexed by a searh engine).Although a string an be seen as a partiular ase of a binary relation, where the objets are positionsand exatly one label is assoiated to eah position, the searh operations on binary relations are morediverse, inluding operators on both labels and objets. For any label α, objet x, and integer r, the basioperators on binary relations are label_rankR(α, x): the number of objets labeled α preeding or equal to

x; label_selectR(α, r): the position of the r-th objet labeled α if any, or ∞ otherwise; label_nbR(α),the number of objets with label α; object_rankR(x, α): the number of labels assoiated with objet xpreeding or equal to label α; object_selectR(x, r): the r-th label assoiated with objet x, if any, or ∞otherwise; object_nbR(x): the number of labels assoiated with objet x; and table_accessR(x, α): hekswhether objet x is assoiated with label α.Suh a binary relation, onsisting of t pairs from [n]×[σ], an be enoded as a text string S listing the tlabel ourrenes, and a bit vetor B indiating how many labels are assoiated with eah objet [3℄, so thatsearh operations on the objets assoiated with a �xed label are redued to a ombination of operators ontext and binary strings: suh a representation uses t(lg σ + o(lg σ)) bits. Using a more diret redution tothe enoding of permutations, the index of the binary relation an be separated from its enoding, and evenmore operators an be supported, taking literals (overing labels and negation of labels) as parameters [4℄.The spae used by the resulting data-strutures is optimal up to asymptotially negligible terms [18℄ amongsuint indexes, but open in the general ase.2.6 Labelled Trees and Planar GraphsA labeled tree T with any number of labels per node an be represented by an ordinal tree oding itsstruture [23℄ and a binary relation R assoiating to eah node its labels [3℄. If the nodes are onsidered in3



preorder (resp. in DFUDS order) the searh operators enumerate all the desendants (resp. hildren) of anode mathing some literal α. Using suint indexes, a single enoding of the labels and the support of apermutation between orders is su�ient to implement both enumerations and other searh operators on thelabels [4℄. Sine a binary relation an be seen as a very �at labeled tree, the lower bounds on binary relationsobviously also hold for labeled trees.Similarly to the unlabeled version, the suint enodings for labeled planar graphs take advantage ofthe results on labeled trees [2℄, whether the labels are assoiated to the nodes or to the edges.3 Adaptive Analysis3.1 Convex HullThe onvex hull of a �nite set of n points S is the smallest onvex polygon ontaining the set. By onvention,the size of this polygon is noted h. In two dimensions, sorting the verties by their relative slope to a pivotyields an algorithm omputing the onvex hull in O(n lg n) operations. This omplexity is optimal in theworst ase over instanes of �xed size n, but unaeptable in pratie, where n is often very large.Rather, using a divide-and-onquer tehnique, one an ompute the onvex-hull in O(n lg h)operations [24℄. This algorithm is output-sensitive (i.e. adaptive to the size of the output) in the sensethat it performs better on instanes of both small input and output size, and better on instanes of smalloutput size among all instanes of �xed input size. This bound is tight among all instanes of �xed inputand output size.3.2 SortingSorting an array A of numbers is a basi problem, where the size of the output of an instane is alwaysequal to its input size. Still, some instanes are easier than others to sort (e.g. a sorted array, whih anbe heked/sorted in linear time). Instead of the output size, one an onsider the disorder in an array as ameasure of the di�ulty of sorting this array [9, 25℄.There are many ways to measure this disorder: one an onsider the number of exhanges required tosort an array; the number of adjaent exhanges required; the number of pairs (i, j) suh that A[i] > A[j],but there are many others [29℄. For eah disorder measure, the logarithm of the number of instanes with a�xed size and disorder forms a natural lower bound to the worst ase omplexity of any sorting algorithmin the omparison model, as a orret algorithm must at least be able to distinguish all instanes. As aonsequene, there ould be as many optimal algorithms as there are di�ulty measures. Instead, one anredue di�ulty measures between themselves, whih yields a hierarhy of disorder measures [14℄.3.3 Union of Sorted SetsA problem where the output size an vary but is not a good measure of di�ulty, is the desription of thesorted union of sorted sets: given k sorted sets, desribe their union. On the one hand, the sorted union of
A = {0, 1, 2, 3, 4} and B = {5, 6, 7, 8, 9} is easier to desribe (all values from A in their original order, followedby all values from B, in their original order) than the union of C = {0, 2, 4, 6, 8} and D = {1, 3, 5, 7, 9}. Onthe other hand, a deterministi algorithm must �nd this desription, whih an take muh more time thanto output it when omputing the union of many sets at one.Possible measures of di�ulty are then the minimal enoding size C of a erti�ate [13℄, a set ofomparisons required to hek the orretion of the output of the algorithm (yielding omplexity Θ(C));or the non-deterministi omplexity [6℄, the number of steps δ performed by a non deterministi algorithmto solve the instane, or equivalently the minimal number of omparisons of a erti�ate (yielding omplexity
Θ(δk lg(n/δk))). For both measures, there is an algorithm proved to be optimal whih is not optimal for theother measure. Finding a more general measure of di�ulty is an open problem.4



3.4 Intersetion and Threshold Set of Sorted ArraysA related problem, with appliations to onjuntive queries in indexed searh engines, is the intersetion ofsorted arrays: as an indexed searh engine maintains for eah keyword a sorted list of the related objets,answering a onjuntive queries omposed of k keywords orrespond to interset the k sets assoiated tothose keywords. Reusing the arrays from the previous example, while both intersetions are empty, it iseasier to prove that the intersetion of A = {0, 1, 2, 3, 4} and B = {5, 6, 7, 8, 9} is empty (the largest elementfrom A is smaller than the smallest element from B) than it is for the intersetion of C = {0, 2, 4, 6, 8} and
D = {1, 3, 5, 7, 9} [13℄.The di�ulty measures onsidered are the minimal enoding size G of a part of the erti�ate [13℄(yielding omplexity Θ(kG)) and the minimal number δ of omparisons of a erti�ate [5℄ (yielding omplexity
Θ(δk lg(n/δk))) as for the union, and a measure ρ related to the number of possible short erti�ates of theanswer, to take into aount features making the instane easier for randomized algorithms [1℄ (yieldingomplexity Θ(ρk lg(n/ρk))).As an empty intersetion orresponds to the null answer to a onjuntive query, it is natural to onsidera relaxation of the intersetion of sorted arrays, the threshold set omposed of all the elements whih areontained in at least t arrays. For t = k this is obviously the intersetion, for t = 1 it is obviously theunion, and for t = 2 the desription of the threshold set orresponds exatly to the desription of the uniondisussed above. The same tehniques yields very similar results, even when weights are assoiated to theterms of the query (simulating the repetition of an array in the intersetion), or with the pairs of the binaryrelation (to distinguish di�erent level of assoiation between labels and objets) [31℄.3.5 Pattern Mathing in Labelled TreesGiven a multi-labeled tree and k labels, the path subset pattern mathing onsists in �nding eah node x suhthat the path from the root to x mathes the labels. Given a multi-labeled tree and k labels, eah node ofthe orresponding lowest ommon anestor set is suh that its desendants math all the keywords, but noneof them is a lowest ommon anestor itself [32℄. Supposing an enoding of the multi-labeled tree allowinge�ient searh operators (suh as the one desribed in Setion 2.6 or an equivalent one based on sortedarrays), the tehnique desribed to ompute the intersetion of sorted arrays generalizes easily to solve thosequeries [3℄, and to solve their generalization to the threshold set.4 Combining Approahes and PerspetiveData strutures and algorithms are omplementary. Any hoie of data-struture an be ombined with anyalgorithm, and the best performane is obtained only when they interat well.For instane, a naive approah would be to replae sorted arrays by binary vetors, and to replae thebinary or doubling searhes in those arrays by a ombination of bin_rank and bin_select operators,reduing the time from O(lg n) to onstant. Among many other results, this yields an intersetion algorithmsolving onjuntive queries in O(δk) operations in the word RAM model instead of Θ(δk lg(n/δk)) in theomparison model (Setion 3.4), but at an exessive ost in spae. A wiser approah is to take a largerperspetive and to reonsider the abstrat data types from the beginning. For instane, in the exampleabove, the omplexity of the intersetion algorithm an be improved to O(δk llg σ) by enoding all thesorted arrays in a single binary relation [3℄, replaing the binary or doubling searhes by a ombination of
label_rank and label_select operators, while potentially reduing the spae taken by the index from
t(lg n) + σ to t(lg σ + o(lg σ)). The same approah yields similar results for pattern mathing queries inlabeled trees [3℄.In those examples the omplexity O(δk llg σ) ahieved by adaptive algorithms using suint datastrutures is getting very lose to the theoretial non-deterministi lower bound of Ω(δ) for the instane:in pratie k is often quite small, and the funtion llg σ grows so slowly with σ that it would require someunrealisti data set for it to be larger than 6 (e.g. 2 ↑ 6 > 1019): the worst ase analysis annot be re�ned5



further in the asymptoti perspetive. The next hallenges are of ourse to apply those tehniques to moreproblems, but also to extend the tehniques to other omputational models, for instane to multiore systemsand extended memory hierarhy, and to study the values taken experimentally by the di�ulty measures foreah partiular lass of appliation, in the hope to further adapt the enoding and algorithmi solutions.
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