
Succinct Encoding of Permutations

and its Applications to Text Indexing

(2003; Munro, Raman, Raman, Rao)

Jérémy Barbay (University of Waterloo), www.cs.uwaterloo.ca/˜jbarbay
J. Ian Munro (University of Waterloo), www.cs.uwaterloo.ca/˜imunro

entry editor: Paolo Ferragina

INDEX TERMS: Succinct Data Structures, Permutations, Functions, Text Strings, Binary
Relations

1 PROBLEM DEFINITION

A succinct data structure for a given data type is a representation of the underlying combinatorial
object that uses an amount of space “close” to the information theoretic lower bound together
with algorithms that supports operations of the data type “quickly”. A natural example is the
representation of a binary tree [5]: an arbitrary binary tree on n nodes can be represented in
2n + o(n) bits while supporting a variety of operations on any node, which include finding its
parent, its left or right child, and returning the size of its subtree, each in O(1) time. As there are
(2n

n

)

/(n + 1) binary trees on n nodes and the logarithm of this term1 is 2n − o(n), the space used
by this representation is optimal to within a lower order term.

In our applications, the principle concern is with indexes supporting search in strings and in
XML-like documents (i.e. tree-structured objects with labels and “free text” at various nodes).
As happens not only labeled trees but also arbitrary binary relations over finite domains are key
building blocks for this. Preprocessing such data-structures so as to be able to perform searches is
a complex process requiring a variety of subordinate structures.

A basic building block for this work is the representation of a permutation of the integers
{0, . . . , n−1}, denoted by [n]. A permutation π is trivially representable in n⌈lg n⌉ bits which is
within O(n) bits of the information theoretic bound of lg(n!). For our purposes, however, we require
not only an arbitrary permutation but also its inverse. As a consequence, we discuss the issue of
representing an arbitrary permutation π on [n] in a succinct manner so that πk(i) (π iteratively
applied k times starting at i, where k can be any integer so that π−1 is the inverse of π) can be
evaluated quickly.

2 KEY RESULTS

Munro et al. [7] studied the problem of succinctly representing a permutation to support computing
πk(i) quickly. They give two solutions: one supports the operations arbitrarily quickly, at the cost
of extra space; the other uses essentially optimal space at the cost of slower evaluation.

Given an integer parameter t, the permutations π and π−1 can be supported by simply writing
down π in an array of n words of ⌈lg n⌉ bits each, plus an auxiliary array S of at most n/t shortcuts
or back pointers. In each cycle of length at least t, every t-th element has a pointer t steps back.

1All logarithms are taken to the base 2. We denote the iterated logarithm by lg(i)
n, hence lg lg lg x is lg(3)

x.

1

π(i) is simply the i-th value in the primary structure, and π−1(i) is found by moving forward until a
back pointer is found and then continuing to follow the cycle to the location that contains the value
i. The trick is in the encoding of the locations of the back pointers: this is done with a simple bit
vector B of length n, in which a 1 indicates that a back pointer is associated with a given location.
B is augmented using o(n) additional bits so that the number of 1’s up to a given position and the
position of the r-th 1 can be found in constant time (i.e. using the rank and select operations on
binary strings [8]). This gives the location of the appropriate back pointer in the auxiliary array S.

5
1

8
7

2

4

6

3

i 1 2 3 4 5 6 7 8

π(i) = 4 8 6 3 5 2 1 7
B = 1 0 0 0 0 1 1 0
S = 7 1 6

Figure 1: A permutation on {1, . . . , 8}, with 2 cycles and 3 back pointers. The full lines correspond
to the permutation, the dashed lines to the back pointers, the grey lines to the edges traversed to
compute π−1(3).

For example, the permutation π = (4, 8, 6, 3, 5, 2, 1, 7) consists of two cycles, (1, 4, 3,6, 2, 8,7)
and (5) (see Figure 1). For t = 3, the back pointers are cycling backward between 1, 6 and 7 in
the largest cycle (there are none in the other because it is smaller than t). To find π−1(3), follow
π from 3 to 6, observe that 6 is a back pointer because marked by the second 1 in B, and follow
the second value of S to 1, then follow π from 1 to 4 and then to 3: the predecessor of 3 has been
found. As there are back-pointer every t elements in the cycle, finding the predecessor requires
O(t) memory accesses.

For arbitrary i and k, πk(i) is supported by writing the cycles of π together with a bit vector B
marking the beginning of each cycle. Observe that the cycle representation itself is a permutation
in “standard form”, call it σ. For example, the permutation π = (6, 4, 3, 5, 2, 1) has three cycles
{(1, 6), (3), (2, 5, 4)} and is encoded by the permutation σ = (1, 6, 3, 2, 5, 4) and the bit vector
B = (1, 0, 1, 1, 0, 0). The first task is to find i in the representation: it is in position σ−1(i). The
rank and select operations on B now enable us to find the segment of the representation containing
i. From this πk(i) is easily determined by taking k modulo the cycle length and moving that number
of steps around the cycle starting at the position of i.

Other than the support of the inverse of σ, all operations are performed in constant time, hence
the total time depends on the value chosen for t.

Theorem 1 (Munro et al. 2003). There is a representation of an arbitrary permutation π on [n]
using at most (1 + ε)n lg n + O(n) bits that can support the operation πk() in time O(1/ε), for any
constant ε less than 1 and for any arbitrary value of k.

It is not difficult to prove that this technique is optimal under a restricted model of pointer
machine. So, for example, using O(n) extra bits (i.e. O(n/ lg n) extra words), Ω(lg n) time
is necessary to compute both π and π−1. However, using another approach Munro et al. [7]
demonstrate that the lower bound suggested does not hold in the RAM model. The approach is
based on the Benes Network, a communication network composed of switches that can be used to
implement permutations.

Theorem 2 (Munro et al. 2003). There is a representation of an arbitrary permutation π on [n]
using at most ⌈lg(n!)⌉ + O(n) bits that can support the operation πk() in time O(lg n/ lg(2) n).

2

While this data-structure uses less space than the other, it requires more time for each operation.
It is not known whether this time bound can be improved using only O(n) “extra space”. As a
consequence, the first data structure is used in all applications. Obviously, any other solution can
be used, potentially with a better time/space trade-off.

3 APPLICATIONS

The results on permutations are particularly useful on two lines of research, first in the extension
of the results on permutation to arbitrary integer functions; and second, and probably more
importantly, in encoding and indexing text strings, which themselves are used to encode sparse
binary relations and labeled trees. We summarize some of these results.

3.1 Functions

Munro and Rao [9] extended the results on permutations to arbitrary functions from [n] to [n].
Again fk(i) indicates the function iterated k times starting at i. If k is nonnegative, this is
straightforward. The case in which k is negative is more interesting as the image is a (possibly
empty) multiset over [n] (see Figure 2 for an example). Whereas π is a set of cycles, f can be
viewed as a set of cycles in which each node is the root of a tree. Starting at any node (element
of [n]), the evaluation moves one step toward the root of the tree or one step along a cycle (e.g.
f(8) = 7, f(10) = 11). Moving k steps in a positive direction is straightforward, one moves up a
tree and perhaps around a cycle (e.g. f5(9) = f3(9) = 3) When k is negative one must determine
all nodes of distance k from the starting location, i, in the direction towards the leaves of the trees
(e.g. f−1(13) = {1, 11, 12}, f−1(3) = {4, 5}). The key technical issue is to run across succinct tree
representations picking off all nodes at the appropriate levels.

Theorem 3 (Munro and Rao 2004). For any fixed ε, there is a representation of a function
f : [n] → [n] that takes (1 + ε)n lg n + O(1) bits of space, and supports fk(i) in O(1 + |fk(i)|) time,
for any integer k and for any i ∈ [n].

2 4 3 5

6

7

8

12

1

13

11

10

9

i 1 2 3 4 5 6 7 8 9 10 11 12 13

f(i) = 13 2 4 3 3 5 5 7 7 11 13 13 10
f−1(i) = {} {2} {4,5} {3} {6,7} {} {8,9} {} {} {13} {10} {} {1,11,12}

Figure 2: A function on {1, . . . , 13}, with 3 cycles and 2 nontrivial tree structures.

3.2 Text Strings

Indexing text strings to support the search for patterns is an important general issue. Barbay et
al. [2] consider “negative” searches, along the following lines:

Definition 1. Consider a string S[1, n] over the alphabet [l]. A position x ∈ [n] matches a literal
α ∈ [l] if S[x] = α. A position x ∈ [n] matches a literal ᾱ if S[x] 6= α. The set {1, . . . , l} is denoted
by [l̄].

3

Given a string S of length n over an alphabet of size l, for any position x in the string, any
literal α ∈ [l] ∪ [l̄] and any integer r, we consider the following operators:

• string rank
S
(α, x): the number of occurrences of α in S[1..x];

• string select
S
(α, r): the position of the r-th occurrence of α in S, or ∞ if none exists;

• string access
S
(x): the label S[x];

• string pred
S
(α, x): the last occurrence of α in S[1 . . . x], or ∞ if none exists; and

• string succ
S
(α, r): the first occurrence of α in S[x . . .], or ∞ if none exists.

Golynski et al. [4] observed that a string of length l on alphabet [l] can be encoded and indexed
by a permutation on [l] (which for each label lists the positions of all its occurrences) together with
a bit vector of length 2l (which signals the end of each sub-list of occurrences corresponding to a
label). For instance, the string ACCA on alphabet {A,B,C,D} is encoded by the permutation
(1, 4, 2, 3) and the bit vector (0, 0, 1, 1, 1, 0, 0, 1). Golynski et al. are then able to support the
operators rank, select and access in time O(lg(2) n), by using a value of t = lg(2) n in the encoding
of permutation of Theorem 1.

This encoding achieves fast support for the search operators defined above restricted to labels
(not literals), with a small overhead in space, by integrating the encodings of the text and the
indexing information. Barbay et al. [2] extended those operators to literals, and showed how to
separate the succinct encoding of the string S, in a manner that assumes we can access a word of
S in a fixed time bound, and a succinct index containing auxiliary information useful to support
the search operators defined above.

Theorem 4 (Barbay et al. 2007). Given access to a label in the raw encoding of a string S ∈
[l]n in time f(n, l), there is a succinct index using n(1 + o(lg l)) bits that supports the operators
string rank

S
, string pred

S
and string succ

S
for any literal α ∈ [l] ∪ [l̄] in O(lg(2) l · lg(3) l ·

(f(n, l)+ lg(2) l)) time; and the operator string select
S

for any label α ∈ [l] in O(lg(3) l · (f(n, l)+
lg(2) l)) time.

The separation between the encoding of the string or an XML-like document and its index has
two main advantages:

• The string can now be compressed and searched at the same time, provided that the compressed
encoding of the string supports the access in reasonable time, as does the one described by
Ferragina and Venturini [3].

• The operators can be supported for several orderings of the string, for instance induced by
distinct traversals of a labeled tree, with only a small cost in space. It is important for
instance when those orders correspond to various traversals of a labeled structure, such as
the depth-first and DFUDS traversals of a labeled tree [2].

3.3 Binary Relations

Given two ordered sets of sizes l and n, denoted by [l] and [n], a binary relation R between these
sets is a subset of their Cartesian product, i.e. R ⊂ [l]×[n]. It is used, for instance, to represent
the relation between a set of labels [l] and a set of objects [n].

Although a string can be seen as a particular case of a binary relation, where the objects are
positions and exactly one label is associated to each position, the search operations on binary
relations are diverse, including operators on both the labels and the objects. For any literal α,
object x, and integer r, we consider the following operators:

4

• label rankR(α, x): the number of objects labeled α preceding or equal to x;

• label selectR(α, r): the position of the r-th object labeled α if any, or ∞ otherwise;

• label nbR(α), the number of objects with label α;

• object rank
R
(x, α): the number of labels associated with object x preceding or equal to label

α;

• object select
R
(x, r): the r-th label associated with object x, if any, or ∞ otherwise;

• object nb
R
(x): the number of labels associated with object x; and

• table accessR(x, α): checks whether object x is associated with label α.

Barbay et al. [1] observed that such a binary relation, consisting of t pairs from [n]×[l], can be
encoded as a text string S listing the t labels, and a binary string B indicating how many labels are
associated with each object. So search operations on the objects associated with a fixed label are
reduced to a combination of operators on text and binary strings. Using a more direct reduction to
the encoding of permutations, the index of the binary relation can be separated from its encoding,
and even more operators can be supported [2]:

Theorem 5 (Barbay et al. 2007). Given support for object access
R

in f(n, l, t) time on a binary
relation formed by t pairs from an object set [n] and a label set [l], there is a succinct index using
t(1 + o(lg l)) bits that supports label rankR for any literal α ∈ [l] ∪ [l̄] and label accessR for any
label α ∈ [l] in O(lg(2) l · lg(3) l · (f(n, l, t) + lg(2) l)) time, and label selectR for any label α ∈ [l]
in O(lg(3) l · (f(n, l, t) + lg(2) l)) time.

We conclude this entry by mentioning that a labeled tree T can be represented by an ordinal
tree coding its structure [6] and a string S listing the labels of the nodes. If the labels are listed in
preorder (resp. in DFUDS order) the operator string succ

S
enumerates all the descendants (resp.

children) of a node matching some literal α. Using succinct indexes, a single encoding of the labels
and the support of a permutation between orders is sufficient to implement both enumerations, and
other search operators on the labels. These issues, along with strings and labeled trees compression
techniques which achieve the entropy of the indexed data, are covered in more details in other
entries cited in the Cross References section.

4 OPEN PROBLEMS

None is reported.

5 EXPERIMENTAL RESULTS

None is reported.

6 DATA SETS

None is reported.

7 URL to CODE

None is reported.

5

8 CROSS REFERENCES

Compressed Text Indexing; Compressed Suffix Array; Rank and Select over Binary Strings; Text
Indexing, Tree Compression and Indexing.

9 RECOMMENDED READING

[1] J. Barbay, A. Golynski, J. I. Munro, and S. S. Rao, Adaptive searching in succinctly
encoded binary relations and tree-structured documents, in Proceedings of the 17th Annual
Symposium on Combinatorial Pattern Matching (CPM), vol. 4009 of Lecture Notes in
Computer Science (LNCS), Springer-Verlag, 2006, pp. 24–35.

[2] J. Barbay, M. He, J. I. Munro, and S. S. Rao, Succinct indexes for strings, binary
relations and multi-labeled trees, in Proceedings of the 18th ACM-SIAM Symposium on
Discrete Algorithms (SODA), ACM, 2007, pp. 680–689.

[3] P. Ferragina and R. Venturini, A simple storage scheme for strings achieving entropy
bounds, in Proceedings of the 18th ACM-SIAM Symposium on Discrete Algorithms (SODA),
ACM, 2007, pp. 690–695.

[4] A. Golynski, J. I. Munro, and S. S. Rao, Rank/select operations on large alphabets: a
tool for text indexing, in Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), ACM, 2006, pp. 368–373.

[5] G. Jacobson, Space-efficient static trees and graphs, in Proceedings of the 30th IEEE
Symposium on Foundations of Computer Science (FOCS), 1989, pp. 549–554.

[6] J. Jansson, K. Sadakane, and W.-K. Sung, Ultra-succinct representation of ordered
trees, in Proceedings of the 18th ACM-SIAM Symposium on Discrete Algorithms (SODA),
ACM, 2007, pp. 575–584.

[7] J. I. Munro, R. Raman, V. Raman, and S. S. Rao, Succinct representations of
permutations, in Proceedings of the 30th International Colloquium on Automata, Languages
and Programming (ICALP), vol. 2719 of Lecture Notes in Computer Science (LNCS),
Springer-Verlag, 2003, pp. 345–356.

[8] J. I. Munro and V. Raman, Succinct representation of balanced parentheses and static
trees, SIAM Journal on Computing, 31 (2001), pp. 762–776.

[9] J. I. Munro and S. S. Rao, Succinct representations of functions, in Proceedings of the
International Colloquium on Automata, Languages and Programming (ICALP), vol. 3142 of
Lecture Notes in Computer Science (LNCS), Springer-Verlag, 2004, pp. 1006–1015.

6

