Faster Adaptive Set Intersections
for Text Searching

Jérémy Barbay, Alejandro Lépez-Ortiz, and Tyler Lu

David R. Cheriton School of Computer Science
University of Waterloo, Waterloo, ON N2L 3G1, Canada
{jbarbay,alopez-o,ttlu}@uwaterloo.ca

Abstract. The intersection of large ordered sets is a common problem
in the context of the evaluation of boolean queries to a search engine.
In this paper we engineer a better algorithm for this task, which im-
proves over those proposed by Demaine, Munro and Lépez-Ortiz [SODA
2000/ALENEX 2001], by using a variant of interpolation search. More
specifically, our contributions are threefold. First, we corroborate and
complete the practical study from Demaine et al. on comparison based
intersection algorithms. Second, we show that in practice replacing bi-
nary search and galloping (one-sided binary) search [4] by interpolation
search improves the performance of each main intersection algorithms.
Third, we introduce and test variants of interpolation search: this results
in an even better intersection algorithm.

Topics. Fvaluation of Algorithms for Realistic Environments, Implemen-
tation, Testing, Fvaluation and Fine-tuning of Algorithms, Information
Retrieval.

1 Introduction

The intersection of large ordered sets is a common problem in the context of
the evaluation of relational queries to databases as well as boolean queries to
a search engine. The worst case complexity of this problem has long been well
understood, dating back to the algorithm by Hwang and Lin from over three
decades ago [13]. In 2000, Demaine et al. improved over this by proposing a faster
method for computing the intersection of k sorted sets [7] using an adaptive
algorithm. Their algorithm has optimal worst-case behaviour on a much finer
analysis than simply worst-case input size. We refer the reader to [7] for the
precise details on the adaptive measure used.

In a followup study they showed that the adaptive theoretical optimal al-
gorithm is not always best in practice in the context of search engines [8]. In
that study, they compared a straightforward implementation of an intersection
algorithm, termed SvS, with their adaptive algorithm, termed Adaptive, and
showed that on the given data Adaptive is superior only for queries involving
two or three terms, while thereafter SvS outperforms it by a constant factor.
Their study uses what at the time was a sizable collection of plain text from



web pages. Using this data set, Demaine et al. engineered an algorithm, termed
Small Adaptive, that combines the best aspects of both Adaptive and SvS.
They showed experimentally that on the given data set this algorithm outper-
forms both the Adaptive and SvS algorithm.

In this paper we revisit that study. Our contributions are threefold. First, we
corroborate the practical study from [8] by considering a much larger web crawl
and extend their study to include a more recent algorithm, introduced in [3]. The
results are similar to those of the original study: the algorithm termed Small
Adaptive is the one which performs the best. Second, we study the impact of
replacing binary searches and galloping (one-sided binary) searches [4] by inter-
polation searches, for each of the main intersection algorithms. Our results show
that this improves the performance of each intersection algorithm. The optimal
algorithm, Interpolation Small Adaptive, is based on Small Adaptive, and
our results show that the relative performance of the intersection algorithms
are the same when using interpolation search than when using binary search
and galloping. Third, we introduce several parameterized variants of extrapola-
tion search, which combine the concepts of interpolation search and galloping,
taking advantage of both. We evaluate the performance of each of those vari-
ants using Small Adaptive as a base, and we identify the best variant, termed
Extrapolate Ahead Small Adaptive, which at each step computes the posi-
tion of the next comparison using the values of elements at distance [ of each
other, and which performs the best when [ is logarithmic on the size of the set.
This results in an intersection algorithm which performs even better in practice
than simply introducing interpolation.

The paper is structured as follows: in the next section we describe the data set
on which we evaluated the various algorithms discussed. In Section 3 we describe
in detail the intersection algorithms studied, and the basis of the interpolation
algorithms. In Section 4 we present our experimental results. We conclude in
Section 5 with a summary of the results.

2 Dataset

The intersection of sets in the context of search engines is a driving application
for this work. Thus we test our algorithms using a web crawl together with a
representative query log from a search engine. Each set corresponds to a keyword
occurring in a query, and the elements of each set refer to integer document
identifiers of those web pages containing the keyword. We use a sample web
corpus from Google of 6.85 gigabytes of text as well as a 5000 entry query log,
also from Google. The query log is the same as in [8], while the web crawl is a
substantially larger and more recent data set. In the past we empirically verified
that the relative performance of the algorithms did not change when run on
corpora varying in size by orders of magnitude. Our results using this new larger
set are consistent with this observation.

The web corpus was indexed into an inverted word index, which lists a set of
document identifiers in increasing order for each word appearing in the corpus.
The total number of web pages indexed is approximately 600,000. The size of the



resulting inverted word index is 1.06 gigabytes with HTML markup removed,
and the number of words in the index is 2,604,335. Note that words consists of
only alphanumerical characters.

In the sample query log from Google, we do not consider queries that contain
words not found in our index nor queries that consists of a single keyword since
no set intersection need be performed in this case. We refer the reader to [8] for
a more thorough discussion on the query log.

3 Algorithms

3.1 Intersection Algorithms

Various algorithms for the intersection of k£ sets have been introduced in the lit-
erature [3,7,8]. In this study we focus on four particular ones, described below.
We do not consider, however, the most naive sequential (linear merging) algo-
rithm as both theoretical and experimental analysis show that its performance
in the comparison model is significantly worse than the ones studied here.

Algorithm 1 Pseudo-code for Adaptive

1: Choose eliminator e = set[0][0], in the set elimset «— 0.
2: Consider the first set, i <+ 1
3: while the eliminator e # oo do
4:  perform one step of the galloping search in set[d].
5 if the gallop overshot then
6 binary search in set[i] for e.
T if e was found then
8: increase the occurrence counter, and let ¢ < i + 1 mod k,i # elimset.
9 if the value of occurrence counter is k then
0 output e and let e «— set[i][succ(e)], elimset — i
1< i+ 1 mod k,i # elimset.

10:

11: else

12: set e to the first element in set[:] which is larger than e.
13: update the set elimset < i and consider the next set:
14: 1« i+ 1 mod k,i # elimset.

15: end if

16: end if

17 end if

18: end while

The theoretical study in [7] introduced an information theoretical optimum
algorithm, which was implemented in [8] under the name Adaptive. This algo-
rithm performs a search in all other sets for an element from one set, using a
one-sided binary search or “galloping” search. The element being searched for is
updated using a greedy technique. For the details we refer the reader to [7].

The experimental study in [8] introduced more algorithms, simulating four-
teen different algorithms to study their practical performance on a query set pro-
vided by Google and a data set obtained through their own web crawl. Of those,



we focus on two particular ones: SvS and Small Adaptive. SvS is a straightfor-

Algorithm 2 Pseudo-code for SvS

1: Sort the sets by size (|set[0]| < |set[1]] < ... < |set[k]]).

2: Let the smallest set s[0] be the candidate answer set.

3: for each set s[i], ¢ = 1...k do initialize ¢[k] = 0.

4: for each set sfi], t=1...k do

5:  for each element e in the candidate answer set do

6: binary search for e in s[i] in the range £[i] to |s[i]|,

7 and update £[¢] to the last position probed in the previous step.
8: if e was not found then

9: remove e from candidate answer set,
10: and advance e to the next element in the answer set.
11: end if
12:  end for
13: end for

ward algorithm widely used in practice, which intersects the sets two at a time
in increasing order by size, starting with the two smallest. It uses a binary search
procedure to determine if an element in the first set appears in the second set.

Algorithm 3 Pseudo-code for Small Adaptive

1: Sort the sets by size (|set[0]| < |set[1]] < ... < |set[k]])-

2: Choose an eliminator e = set[0][0] in the set elimset «— 0.

3: Consider the first set, i < 1.

4: while the eliminator e # oo do

5:  gallop once in set[q].

6:  if the gallop overshot then

T binary search in set[i] for e.

8: if e was found then

9: increase the occurrence counter and let ¢ <+ 7 + 1 mod k, ¢ # elimset.
10: if the value of occurrence counter is k then
11: add e to answer.
12: resort the sets, and let e «— set[0][succ(e)], elimset «— 0, i1
13: end if
14: else
15: resort the sets.
16: if i =0 or i =1 then consider the set i «— 1 — 1,
17: else consider the first set: elimset < 0, ¢+« 1. end if
18: end if
19:  end if

20: end while

Small Adaptive is a hybrid algorithm, which combines the best properties of
SvS and Adaptive. For each element in the smallest set, it performs a galloping



one-sided search on the second smallest set. If a common element is found, a new
search is performed in the remaining & — 2 sets to determine if the element is
indeed in the intersection of all sets, otherwise a new search is performed. Observe
that the algorithm computes the intersection from left to right, producing the
answer in increasing order. After each step, each set has an already examined
range and an unexamined range. Small Adaptive selects the two sets with the
smallest unexamined range and repeats the process described above until there
is a set that has been fully examined.

Algorithm 4 Pseudo-code for Sequential

1: Choose an eliminator e = set[0][0], in the set elimset < 0.

2: Consider the first set, i — 1.

3: while the eliminator e # co do

4:  Gallop for e in set[d] till overshot

5:  binary search in set[i] for e

6:  if the binary search found e then

T increase the occurrence counter.

8: if the value of occurrence counter is k then output e end if
9:  end if

10:  if the value of the occurrence counter is k, or e was not found then
11: update the eliminator to e « set[i][succ(e)].

12:  end if

13:  Consider the next set in cyclic order i «+— ¢ + 1 mod k.

14: end while

The theoretical study in [3] introduces a fourth algorithm, called Sequential,
which is optimal for a different measure of difficulty, based on the non-
deterministic complexity of the instance. It cycles through the sets performing
one entire gallop search at a time in each (as opposed to a single galloping step in
Adaptive), so that it performs at most k searches for each comparison performed
by an optimal non-deterministic algorithm.

The pseudo-code for the algorithms described above is given in Algorithms 1
to 4. Each of those algorithms has linear time worst case behaviour, and each
performs better than the others on at least one instance. Adaptive performs
well on instances with an intersection certificate that can be encoded in a small
amount of space, while Sequential performs well on instances whose intersection
certificate contains a small number of comparisons. SvS reduces the number
of sets by intersecting the two smallest sets, searching for the elements of the
smallest set in the larger set; Small Adaptive performs similarly so long as no
element is found to be in the intersection of the two sets, at which point it
checks for it in the other sets, and after which it updates which sets are the
smallest. Note that Small Adaptive and SvS are the only algorithms taking
active advantage of the difference of sizes of the sets, and that Small Adaptive
is the only one which takes advantage of how this size varies as the algorithm
eliminates elements: Adaptive and Sequential ignore this information.



All of these algorithms are based on galloping and binary search, and use
only comparisons between the elements: we study the impact on the performance
of replacing those searches with interpolation search, or a suitably engineered
variant of interpolation search, as described in the next section.

3.2 Search Algorithms

Interpolation search has long been known to perform significantly better than
binary search on data randomly drawn from a uniform distribution, hence it
is only natural to test if this holds using web crawled data. Moreover, recent
developments suggest that interpolation search is also a reasonable technique for
non-uniform data [6]. Our experiments, which we describe in the next Section,
confirm this conjecture.

Recall that interpolation search for an element of value e in an array set|i]
on the range a to b probes a position as given by the formula:

e — set[i][a]

100 = | G e )] o

In each of Adaptive, Small Adaptive and Sequential we replace each gal-
loping step by an interpolation probe, and we replace binary search with in-
terpolation search. In essence, the two changes are equivalent to performing an
interpolation search in set[i] for the eliminator. The index probed is I(£[i], n;),
where £[i] is the current position in set[i] and n; is the size |set[i]| of set[i].

4 Experimental Results

We compare the performance of each of the four algorithms described in the
previous section by focusing on the number of comparisons performed by the al-
gorithms. For large data sets such as in search engines, the run time is dominated
by external memory accesses. It has long been known that the number of compar-
isons by an algorithm generally shows high correlation with the number of 1/O
operations, so we follow this convention. Our model has certain other simplifica-
tions; for example posting sets are likely to be stored in a compressed form, albeit
one suitable for random access. We posit that most such refinements and other
system specific improvements are likely orthogonal to the relative performance
of the search algorithms presented here (see for example [5] for a discussion of
these issues).

4.1 Comparing Intersection Algorithms

Here we present the part of our study which corroborates the study of [8], as we
measure the performance of the algorithms on a larger data set, and completes
it as we compare one more intersection algorithm (Sequential).

Figures 1 and 2 show that, when using binary search, Small Adaptive out-
performs Sequential.
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Fig. 1. Performance of various Intersection algorithms when using binary search.
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stances, and is consistent over k.

Fig. 2. Small Adaptive (high wins) vs.
Sequential (low wins). The algorithm
Small Adaptive is always better.

4.2 Comparing Interpolation and Binary Search

Here we present a first approach of the impact of replacing the binary searches
and galloping by interpolation searches in the intersection algorithms. It is well
known that interpolation search outperforms binary search, on average on arrays
whose elements are well behaved (uniformly distributed). Thus it is expected that
replacing binary search by interpolation search would improve the performance
of the intersection algorithms. As gallop search [4] is a local search algorithm,
it is not necessarily outperformed by interpolation search: we show here that in
practice it is.

Figure 3, 4 and 5 show the clear advantage of using interpolation search over
binary search, as each of the three intersection algorithm using interpolation
search has a clear advantage over its variant using binary search, outperforming
it on almost all instances.
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As a side note, the study of the ratio of the performances (not shown here
because of space limitations) shows that the ratio between the performance
of Interpolation Adaptive and Adaptive, while always larger than one, de-
creases when k increases. This is likely due to the fact that the algorithm contin-
ually cycles through the sets trying to find a set which does not contain the elim-
inator [8]. Thus, the overhead caused by the cycling, which performs one interpo-
lation going through each set (as opposed to galloping), is dominating the num-
ber of comparisons when k is relative large. Note that, in contrast, since Small
Adaptive does not cycle through the sets, the average ratio between the per-
formance of Small Adaptive and Interpolation Small Adaptive stays fairly
constant with respect to k.

The experiments suggest that web crawled data is amenable to interpolation
search, and hence using this technique gives a noticeable reduction in the number
of comparisons required.

4.3 Introducing and Comparing Extrapolation Variants

In this section, we introduce an adaptation of interpolation search, which we
named extrapolation, and some variants of it. We test those variants on our data
set. Interestingly, our experimental results show that the difference in perfor-
mance between search algorithms is independent of the intersection algorithm
chosen. Since Small Adaptive is the fastest algorithm among those tested in [8]
(when using binary search) and in our measures (when using binary search as
well as when using interpolation search), we use it as a reference to show the
performance of different interpolation techniques (See Figure 6).

The first variant, which we call Extrapolation Small Adaptive, involves
extrapolating on the current and previous positions in set[i]. Specifically, the
extrapolation step probes the index I(p},p;), where p; is the previous extrapo-
lation probe. This has the advantage of using “explored data” as the basis for
calculating the expected index: this strategy is similar to galloping, which uses
the previous jump value as the basis for the next jump (i.e. the value of the
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Fig. 6. Relative performance of search algorithms in Small Adaptive: binary search is
outperformed by both interpolation search and Extrapolation-based algorithms.

next jump is the double of the value of the current jump). Figure 7 shows that
extrapolation alone does worse than interpolation. Those results suggest that
using the previous “explored data” for extrapolation is not as accurate as using
a standard interpolation probe, given by I(p;,n;), on the remaining elements in
set|i].
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The second variant, Extrapolate Ahead Small Adaptive, is similar to
Extrapolation Small Adaptive, but rather than basing the extrapolation on
the current and previous positions, we base it on the current position and a po-
sition that is further ahead. Thus, our probe index is calculated by I(p;,p; +1)
where [ is a positive integer that essentially measures the degree to which the ex-
trapolation uses local information. The algorithm uses the local distribution as a
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representative sample of the distribution between set[i][p;] and the eliminator: a
large value of [ corresponds to an algorithm using more global information, while
a small value of [ correspond to an algorithm using only local information. If the
index of the successor succ(e) of e in set[i] is not far from p;, then the distribution
between set[i][p;] and set[i|[p; + ] is expected to be similar to the distribution
between set[i][p;] and set[i][succ(e)], and the estimate will be fairly accurate.
Figure 8 shows that for | = 50, Extrapolate Ahead Small Adaptive performs
as well as Interpolation Small Adaptive, and that their performance stays
close when it is worse. Figure 9 shows a similar result for | = |/n;.
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(low wins) vs. Interpolation Small (low wins) vs. Interpolation Small

Adaptive (high wins). Deterioration of
performance for a polynomial look-ahead
range.

Adaptive (high wins). More complex
results with a logarithmic look-ahead
range.

Figure 10 shows that choosing a smaller value for the look-ahead range [, such
as | = lgn;, deteriorates slightly the performance: the algorithm has a much less
precise approximation of the distribution of the values in the array.

The third variant involves extrapolating many times, which we call
Extrapolate Many Small Adaptive. We calculate the index by taking the av-
erage of several extrapolations, which is based on the current position and several
positions ahead. That is, our probe index can be calculated by % Z;”:l I(pi,pi+
J #), where m is the number of times we extrapolate and [ is the farthest reach
of the extrapolations. This has the advantage of a more accurate extrapolation
and could result in less comparisons. Figures 11 and 12 show that it is not the
case, as Interpolation Small Adaptive is still better, if only by a small mar-
gin. This is perhaps due to the fact that the extrapolations with larger values
of j in I(pi,pi + ]%) is more accurate than those with smaller values of j, thus
when taking the average of all extrapolations, the ones with small values of j
contribute more to the inaccuracy of the estimate.

5 Conclusions and Open Questions

We showed that using binary search, the intersection algorithm Small Adaptive
outperforms all the other intersection algorithms including Sequential the most
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recent intersection algorithm proposed in the theory community, which hereto-
fore had not been compared in practice. Our results also confirm the superiority
of Small Adaptive over all other algorithms as reported in [8], even on a data
set substantially larger than the one used in that study. Considering variants of
those intersection algorithms using interpolation search instead of binary search
and galloping, we showed that for any fixed intersection technique, such as Small
Adaptive, using interpolation search always improves the performance. Finally,
we combine the two concepts of interpolation search and galloping to define the
extrapolation search and several variants of it. Comparing the practical per-
formance of these on the intersection algorithm Small Adaptive, we found one
that is particularly effective. This results in an even better intersection algorithm,
termed Extrapolate Ahead Small Adaptive, which at each step computes the
position of the next comparison using the values of elements at distance [ of each
other, and which performs the best when [ = Ign;.

Algorithm # of comparisons
Sequential 119479075
Adaptive 83326341
Small Adaptive 68706234
Interpolation Sequential 55275738
Interpolation Adaptive 58558408
Interpolation Small Adaptive 44525318
Extrapolation Small Adaptive 50018852
Extrapolate Many Small Adaptive (m =4, [ = 80) 44119573
Extrapolate Many Small Adaptive (m =38, [ = 80) 44087712
Extrapolate Ahead Small Adaptive (I = 50) 44133783
Extrapolate Ahead Small Adaptive (I =1gn) 43930174
Extrapolate Ahead Small Adaptive (I = /n) 44379689

Table 1. Total number of comparisons performed by each algorithm over the data set.
Extrapolate Ahead Small Adaptive with look-ahead range I =lgn is best.
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For completeness we summarize the results across all algorithms on the whole
data set in Table 1. We would like to highlight some further experiments and open
questions. First, it would be interesting to run the experiments over other data,
such as the TREC corpus, particularly on the web slice of the collection. Second,
to measure actual running times as opposed to the on number of comparisons
alone. We expect that I/O and caching effects would have a significant impact
on the reported times of each algorithm. Third, to study a broader range of
intersection algorithms, as some combining the techniques proposed in [1, 2] with
orthogonal techniques from other intersection algorithms.
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