
Adaptive Algorithm for

Threshold Path Subset Queries

Jérémy Barbay1 and Aleh Veraskouski2

1 DCC (Departamento de Cien
ias de la Computa
ión),
Universidad de Chile, Santiago, Chile.

jbarbay�d

.u
hile.
l
2 CSCS (Cheriton S
hool of Computer S
ien
e)

University of Waterloo, Canada.
averasko�
s.uwaterloo.
a

(graduated, now working for Amazon)

Abstra
t. In the
ontext of queries to indexed sear
h engines su
h as Google, Barbay and Kenyon [6℄
introdu
ed and solved threshold set queries, answered by the set of referen
es asso
iated with at least
t keywords out of the k given as input, for some
onstant parameter t. We sligthly generalize those
results to the easy
ase where weights are asso
iated to the keywords of the query, and to the more
di�
ult
ase where weights are asso
iated to the pairs of the relation between keywords and referen
es.
In the
ontext of sear
h queries on indexed �le systems, Barbay et al. [5℄ introdu
ed and solved path-
subset queries, answered by the minimum set of subtrees whi
h rooted path mat
h all k keywords given
as input. We
ombine both approa
hes to de�ne and solve weighted threshold path-subset queries,
answered by the minimum set of subtrees whi
h rooted path mat
h at least t keywords out of the k

given as input, through the de�nition of a redu
tion to threshold queries.

Keywords. Adaptive algorithms, weighted threshold path-subset queries, multi-

labeled tree.

1 Introdu
tion

Consider the task of a sear
h engine answering
onjun
tive queries: given a set of keywords, it

must return a list of referen
es to the obje
ts relevant to all those keywords. These obje
ts
an be

web-pages as in the
ase of a sear
h engine su
h as Google or Yahoo!, do
uments as in a �le system,

or any other kind of data sear
hed by keywords. A sear
h engine typi
ally uses a pre
omputed index,

representing a binary relation between the set of n obje
ts and the set of σ admissible keywords, or a

labeled tree indexing a �le system. Conjun
tive queries are s
hema-free [12, 16℄: they
an be written

without making any assumption about the stru
ture of the do
ument (e.g. its s
hema in XML [18℄

do
uments). This is important in appli
ations where many do
uments with many di�erent s
hemes

must be sear
hed [1℄.

Adaptive algorithms take advantage of �easy� instan
es, i.e. their run-time depends on some

measure of the di�
ulty of the instan
e. Demaine et al. [8℄
onsidered some appli
ations to queries

on postings lists and studied adaptive algorithms for the union, interse
tion and di�eren
e of sets

represented by sorted arrays.

We
onsider weighted queries on both weighted binary relations and weighted labeled trees,

based on the de�nition of a s
ore fun
tion on the obje
ts of a binary relation or on the nodes of a

tree. We propose adaptive algorithms for two types of weighted queries: on weighted binary relations

and on weighted labeled trees with path non-in
reasing weights. For ea
h result, we measure the

omplexity by the number of sear
h and priority queue operations performed.

The rest of the arti
le is organized as follows. We des
ribe the results that we either use, gener-

alize, or improve upon in Se
tion 2, in two
ategories: data stru
tures (Se
tion 2.1) and algorithms

(Se
tion 2.2). We des
ribe our results on weighted binary relations in Se
tion 3, and our results on

trees with weighted labels in Se
tion 4. Se
tion 5 gives a dis
ussion of the results.

2 Previous Work and Extensions

Various algorithms have been proposed to solve unweighted s
hema-free queries on binary relations,

labeled trees, and other data stru
tures. We review some examples of the data stru
tures
onsidered,

and whi
h queries and algorithms our solutions extend.

2.1 Data Stru
tures

A binary relation between two ordered sets, su
h as one asso
iating labels with obje
ts,
an be

en
oded as a set of sorted arrays
alled postings lists. In this
ase, the answer to a
onjun
tive

query is the interse
tion of the subsets
orresponding to those arrays. A binary sear
h �nds the

insertion rank 3 of a parti
ular element in a sorted array of nα elements in time O(lg nα), and a

straightforward variant
an be used to sear
h the positions of a set of δ in
reasing values in time

O(δ lg(nα/δ)) [6℄.
A binary relation
an also be en
oded as a set of
ompressed bit-ve
tors [13, 15℄, supporting

the sear
h of the insertion rank of a parti
ular element in
onstant time, at the pri
e of spa
e; or

using less spa
e at the
ost of time [5℄. Similarly, a priority queue
an be implemented using various

data stru
tures, for instan
es based on sorted arrays or su

in
t en
odings in the word-RAM model.

While a trivial pointer-based tree stru
ture with k elements will result in O(lg k)
omparisons per

insertion or deletion in the worst-
ase, the more advan
ed stru
ture des
ribed by Andersson and

Thorup [2℄ has only O((lg lg k)2) per insertion or deletion amortized.

Considering the variety of data stru
tures that
an be used to implement binary relations and

priority queues, ea
h of them with a di�erent trade-o� between the spa
e used and the time required

to sear
h in it, we express the
omplexity of our algorithms in the number of sear
h and priority

queue operations performed, so that the
omplexity of the algorithm
an be inferred for ea
h data

stru
ture.

The same holds for labeled trees, su
h as XML do
uments or an index of a �le system, as

their en
oding
an be redu
ed to the en
oding of the tree stru
ture and of the binary relation

asso
iating the nodes in preorder to one or more label. Many e�
ient en
odings are known for

ordinal trees [10, 11, 14℄, and any en
oding
an be used to implement the binary relation and support

the sear
h for the �rst an
estor or the next des
endant of a node x mat
hing some label α [5℄.

2.2 Queries and Algorithms

Conjun
tive queries are well known. Indeed, most sear
h engines implement them. Given a list of

labels (e.g. keywords), the answer
onsists of all the obje
ts (e.g. webpage referen
es) whi
h are

asso
iated with all of the labels. Given an index su
h as des
ribed in the se
tion above, solving a

onjun
tive query
omposed of k labels implies
omputing the interse
tion of k rows in a binary

relation, whi
h is a well studied problem [3, 4, 8, 9℄

As an empty interse
tion
an be an uninformative answer to a
onjun
tive query, we should

onsider other approa
hes. Resear
hers in information retrieval suggest a number of ways to deal

3 The insertion rank of an element x in a set X is the rank (the linear order) of x in the set X ∪ {x}.

2

with this problem. For example, one
an relax both queries and do
ument index in a number of

di�erent ways that are summarized by Bordogna and Pasi [7℄. Barbay and Kenyon [6℄ proposed the

adaptive algorithm to answer the query where for a given parameter t the answer
onsists of the

referen
es mat
hing at least t of the k labels
omposing the query. Given an index su
h as des
ribed

in the se
tion above, solving this new type of query implies
omputing the threshold set of k rows

in a binary relation, the set of obje
ts asso
iated with at least t labels among the k spe
i�ed.

We extend further this type of query to weighted threshold queries, by
onsidering weighted

queries Q : [σ] → {0, . . . , µ
Q
}, where σ is the number of admissible keywords, and weighted binary

relations R : [σ]× [n] → {0, . . . , µ
R
} 4. The s
ore of an obje
t x relative to a query Q on a relation R

is then de�ned as the linear
ombination of those weights, i.e. score(R,Q, x) =
∑

α∈[σ] Q(α)R(α, x),
that
orresponds to the notion of the Retrieval Status Value (or RSV) des
ribed by Bordogna and

Pasi [7℄. The answer to a query with parameter t is the set of obje
ts with s
ore at least t: this
de�nition mat
hes the original one from Barbay and Kenyon when ea
h weight is either null or

unitary (the unweighted
ase).

On labeled trees, one possible adaptation of the idea of
onjun
tive query is the path-subset

query [5℄. Given a set of k labels, the answer to su
h a query
onsists of the set of nodes whose

path to the root mat
hes all the labels and that do not have any an
estors with su
h a property.

We extend this type of queries further to weighted threshold path-subset queries, by
onsidering

weighted queries and weighted binary relations between labels and nodes in a tree (see Se
tion 4

for the formal de�nition).

3 Queries on Binary Relations

We propose an adaptive algorithm to answer weighted threshold queries on weighted binary

relations. It generalizes the original algorithm proposed for threshold queries on binary relations in

the unweighted
ase [6℄, and its analysis is based on similar
on
epts, formalized and extended to

the weighted
ase.

Any algorithm answering weighted threshold queries has to
he
k the
orre
tness of its result, by

ertifying that ea
h obje
t in the answer set has s
ore at least the threshold. Rather than
onsidering

ea
h obje
t separately (whi
h would require time linear in the total number of possible obje
ts), an

algorithm must
onsider whole blo
ks of
onse
utive obje
ts at on
e in order to a
hieve a sublinear

omplexity. We formalize this by the notion of partition-
erti�
ate of an instan
e: a partition (Ii)i∈[δ]

of the set [n] of all obje
ts, su
h that for any i ∈ [δ] either there is a set S of labels su
h that no

obje
t of Ii is asso
iated with a label in S, and the maximum potential s
ore of any of these obje
ts

µ
R

∑
α/∈S Q(α) is less than the t; or Ii is a single obje
t {x} (whose s
ore
an be larger or smaller than

the threshold). The presen
e of singletons whose elements are not in the result set, is unavoidable

in the weighted
ase, where an obje
t
an, for instan
e, be asso
iated with all possible labels and

still not s
ore enough to be in the result set.

There are several ways to de�ne the di�
ulty of an interse
tion instan
e, su
h as the minimal

en
oding size of a
erti�
ate [8℄, or the minimal number of
omparisons [6℄. We de�ne the alternation

of a weighted threshold set instan
e as the size δ of the smallest possible partition-
erti�
ate of

the instan
e. The alternation is related to the non-deterministi

omplexity of the instan
e, as it

orresponds to the
omplexity of a non-deterministi
 algorithm whi
h would produ
e the shortest

4 By [m] we denote {1, . . . , m} for any integer number m.

3

partition-
erti�
ate of the instan
e. In the unweighted
ase (where all weights are unitary), if no

obje
t mat
h the query then the alternation is exa
tly the non-deterministi

omplexity of the

instan
e, i.e. the
omplexity of the best non-deterministi
 algorithm
he
king the answer to the

query.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Musi
 → 1 8 10 12 15 17 → 1 1 . 1 . 1 . . 1 . 1 .

Jazz → 2 4 6 9 11 13 → . 1 . 1 . 1 . . 1 . 1 . 1

Ro
k → 3 5 7 14 16 18 → . . 1 . 1 . 1 1 . 1 . 1

Fig. 1. An example of how a
onjun
tive query
omposed of three keywords
orresponds to the interse
tion
of the three
orresponding sets. The alternation of the instan
e is δ = 4, the number of intervals of a
partition
erti�
ate where ea
h interval has an empty interse
tion with at least one of the sets. Barbay
and Kenyon's algorithm performs 7≤δk=12 sear
hes (for the numbers 1, 2, 3, 8, 9, 14, 15).

Barbay and Kenyon [6℄ proved that any randomized algorithm performs Ω(δk) sear
hes in the

worst
ase over instan
es of di�
ulty δ on k labels, and proposed an optimal deterministi
 algorithm

for the unweighted
ase on sorted arrays. We analyze the
omplexity of the algorithms in terms of

sear
h and priority queue operations, where a priority queue operation is either an insertion or a

deletion from a priority queue, and where ea
h sear
h operation is a sear
h for the parti
ular obje
t

in a data stru
ture representing an ordered list of obje
ts. We propose an optimal algorithm for the

weighted
ase with any data stru
ture supporting the sear
h for the insertion rank in an indexed

set:

Theorem 1. Consider a weighted binary relation R : [σ] × [n] → {0, . . . , µ
R
}, a weighted query

Q : [σ] → {0, . . . , µ
Q
}, and a non-negative integer t. There is an algorithm that
omputes the

threshold set for Q on R with threshold-value of t in O(δk) sear
h and priority queue operations,

where δ is the alternation of the instan
e and k is the number of labels of positive weight in Q.

Algorithm 1 Algorithm answering Threshold Set queries

Set x to −∞, NO and YES to ∅ and MAYBE to the set of all labels of non-null weight;
Update(x, YES, NO, MAYBE, score_min, score_max) using Algorithm 2;
while x < ∞ do

Set α to the next label from MAYBE in round robin order, and dedu
t µ
R

Q(α) from score_max;
Sear
h for the insertion rank of x among the obje
ts labeled α;
if x is asso
iated with a label α then

Move α from MAYBE to YES;
Add Q(α)R(α, x) to score_min and score_max;
if t ≤ score_min then Output x;

else
Move α from MAYBE to NO;

end if
if t ≤ score_min or t > score_max then

Update(x, YES, NO, MAYBE, score_min, score_max);
end if

end while

4

Proof (of Theorem 1). Consider the steps of Algorithm 1: given a query Q with k positive weights

and a threshold-value t, the algorithm
omputes the set of obje
ts s
oring at least t for a weighted

binary relation R asso
iating obje
ts with labels.

Our algorithm goes through a number of phases. At ea
h phase it
onsiders one obje
t x, in
in
reasing order, and bounds its s
ore by an interval [score_min, score_max]. The algorithm
an

de
ide whether x belongs to the result set through this interval and without
omputing the obje
t's

exa
t s
ore (t ≤ score_min ≤ score(x)). On the other hand, if for a given interval of
onse
utive

obje
ts there is a set of labels not asso
iated with any of them with large total weight, this interval

erti�es that none of those obje
ts belongs to the result set (score(x) ≤ score_max < t). The key

issue of the algorithm is the
hoi
e of the values of x and of the labels to
onsider.

This
hoi
e is des
ribed in Algorithm 2, whi
h is based on the de
omposition of the set of labels

of positive weights in three disjoint sets: YES, MAYBE and NO:

� YES
orresponds to the labels already known to be asso
iated with the
urrent value of x. It
an
be implemented as a simple set, for instan
e in an array.

� MAYBE
orresponds to the labels whi
h
ould be asso
iated with the
urrent value of x. It is

implemented as a FIFO queue so that ea
h label in it is
onsidered equally often.

� NO
orresponds to the labels whi
h are known not to be asso
iated with the
urrent value of x.
It is implemented as a priority queue of at most k elements, and the labels α it
ontains are

ordered by the value of the �rst obje
t larger than x asso
iated with label α.

The values of the bounds score_min and score_max on the potential s
ore of x are dire
t

onsequen
es of those de�nitions: score_min depends on the weights of the labels in YES, i.e.

score_min =
∑

α∈YES Q(α)R(α, x); and score_max adds the maximum potential weights of the

labels in MAYBE to score_min, i.e. score_max = score_min +
∑

α∈MAYBE Q(α)µ
R
.

To
hoose a new value for x, the algorithm removes labels from the set MAYBE till it rea
hes a

riti
al weight, where removing any other label would make it impossible for an obje
t mat
hing

only the labels of MAYBE to s
ore above the threshold. Then, the smallest obje
t potentially in the

result set
orresponds to the �rst label of the priority queue implementing set NO.

Consider a phase of the exe
ution where the algorithm is pro
essing an interval of the partition-

erti�
ate
onsisting of only one obje
t x. Algorithm 1 performs at most k iterations of the main

loop to de
ide whether x has enough s
ore or not without updating x (through Algorithm 2). On
e

the de
ision about x is made, the algorithm updates x and moves to the next phase. Updating of

x takes not more than k loop iterations of Algorithm 2. Thus during ea
h phase, the algorithm

performs at most O(k) sear
h and priority queue operations.

Consider a phase
orresponding to the interval of the partition-
erti�
ate that does not have any

obje
ts with enough s
ore and a subset S of labels that are not asso
iated with any of the obje
ts

in this interval. Algorithm 1 may update x more than on
e during the same phase. We prove the

upper bound on the number of operations through
onsidering the way the algorithm moves labels

from one set to another.

The only way Algorithm 1 moves labels is from set MAYBE to either set YES or set NO. Algorithm 2,

on the other hand, move labels from YES to MAYBE, from MAYBE to NO, and from NO to YES in this

order. As it
annot move labels that are in S to YES, the algorithm has the only possible loop

MAYBE −→ NO −→ YES −→ MAYBE for these labels.

However, the algorithm does not move any labels from S that it already moved to NO during

the pro
essing of the same interval, be
ause the label's su

essor is out of the
urrent interval and

annot be pro
essed in the
urrent phase. While the algorithm retrieves labels from set MAYBE in

5

round-robin order, it
annot retrieve any label from set MAYBE for the se
ond time until all the labels

from subset S appear in set NO, whi
h e�e
tively means that the next element x will be outside of

the interval and the algorithm pro
eeds to the new phase. While it takes a
onstant time for the

algorithm to move ea
h label from set MAYBE ba
k to set MAYBE, it needs O(k) sear
h and priority

queue operations to
omplete this phase.

As the algorithm spends O(k) to
omplete any phase, and any instan
e has δ intervals that

orrespond to δ phases, the total
omplexity of the algorithm is O(δk). ⊓⊔

Algorithm 2 Update(x, YES, NO, MAYBE, score_min, score_max)

Add all the labels from YES to the set MAYBE and set score_max to
P

α∈MAYBE
Q(α)µ

R
;

Choose a label α in round-robin order from MAYBE;
while score_max− Q(α)µ

R
≥ t do

Dedu
t Q(α)µ
R
from score_max, and move α from MAYBE to NO;

Choose a label α in round-robin order from MAYBE;
end while
Find the subset S ⊂ NO of labels α su
h that the su

essor of x among the obje
ts labeled α is minimal;
Move all the labels of S from NO to YES, and set score_min to

P

α∈YES
Q(α)R(α, x);

Update x to its su

essor among the obje
ts labeled α, for any label in YES;

Note that k is the number of labels with a positive weight (i.e. non-null). If the binary relation is

implemented by postings lists, and the priority queue is implemented using a heap, the
omplexity

of the algorithm is O(δk lg(n/(δk))+δk lg k), where n is the sum of the sizes of all postings lists and

k is the maximum size of the priority queue. If the binary relation is implemented using Barbay et

al.'s [5℄ su

in
t en
oding and the priority queue is implemented using Andersson and Thorup's [2℄

stru
ture, the
omplexity of the algorithm is O(δk lg lg σ + δk(lg lg k)2) in the RAM model with

word size Θ(lg max{σ, n}).

4 Queries on Labeled Trees

The main idea of path-subset queries [5℄ is that the e�e
t of labels asso
iated with nodes �propa-

gates� to the des
endants of nodes. We extend this
on
ept through the de�nition of a s
ore fun
tion

on the nodes of the tree that depends on the labels asso
iated with a node and its an
estors, and

on the weight of these asso
iations.

Formally, given a query Q on a tree T labeled through the relation R, the path-s
ore of a node

x is de�ned as the sum of maximum values of Q(α)R(α, y) for ea
h node y whi
h is x or one of its

an
estors, over all labels α ∈ [σ]. Ea
h label is
ounted only on
e, i.e. a label α
ontributes only

maxy R(α, y) to node x, where y is x or one of its an
estor. This de�nes the path-s
ore of x as

path_score(T, R, Q, x) =
∑

α∈[σ]

Q(α) max
y∈ancestors(x)∪{x}

R(α, y).

Combining this s
ore fun
tion on nodes with the
on
ept of weighted threshold set queries in

the
ontext of weighted labeled trees brings the
on
ept of weighted threshold path-subset queries,

6

home
3

Musi

2

Classi
al
1

· · ·

Pop Jazz
1 1

· · ·

Pop Ro
k
1 1

· · ·

Video
2

Ro
k Con
erts
1 1

· · ·

Jazz
1

· · ·

Previews
1

· · ·

Fig. 2. An example of a simple �le system. Ea
h node represents a folder and
ontains the words asso
iated with it,
along with the weight of these asso
iations.

answered for a given parameter t by the set of nodes of path-s
ore at least t that do not have any

an
estor mat
hing this property.

We propose an algorithm to solve these queries in the
ase where the labels are asso
iated

with the nodes on the same root-to-leaf path with non-in
reasing weights, i.e. there is no su
h a

node x that has a label α asso
iated with it with some weight R(x, α) and that has a des
endant x′

asso
iated with the same label with larger weight R(x′, α) > R(x, α). This non-in
reasing restri
tion
does not restri
t instan
es where the weights of the labels of the tree are all null or unitary: in both

ases trees are non-in
reasing by de�nition.

This restri
tion makes the
ontribution of a label α to the path-s
ore of a node x depend only

on the weight of the
losest to the root an
estor of the node x asso
iated with the label α, instead
of depending on the arbitrary one with the large weight of its asso
iation with the label α. To solve

weighted threshold path-subset queries in the general
ase, an algorithm would have to
ompute

maxy∈ancestors(x)∪{x} R(α, y) regularly, whi
h makes it more
omplex.

We des
ribe an adaptive analysis of the
omplexity of our algorithm by using a measure of

di�
ulty inspired by the partition-
erti�
ates and alternation, as de�ned for queries on binary

relations. As before, any algorithm answering a weighted threshold path-subset query has to
he
k

the
orre
tness of its result. For this query-type, it
orresponds to produ
ing a
erti�
ate that ea
h

node in the answer set has a path-s
ore of at least the threshold, and that ea
h node that is not

in the answer set either has an an
estor that is in this set or has a path-s
ore smaller than the

threshold.

Any order of the nodes
an be used to easily de�ne sets of nodes that
annot belong to the

answer set. As threshold path-subset queries are based solely on the an
estor-des
endant relation

between nodes, we propose an analysis based on the preorder traversal of the tree, in whi
h all the

des
endants of a node are
onse
utive. As Figure 2 represents an example of the �le system with

nodes
orresponding to �les and folders and labels
orresponding to their names, Figure 3 represents

the binary en
oding of it.

We generalize the
on
ept of the partition-
erti�
ate, introdu
ed on binary relations, to multi-

labeled trees as a partition (Ii)i∈[δ] of the set [n] of all nodes, su
h that for any i ∈ [δ] either

7

1 2 3 4 5 6 7 8 9
Classi
al → . . 1

Con
erts → 1 . .

Home → 3

Jazz → . . . 1 . . . 1 .

Musi
 → . 2

Pop → . . . 1 1

Previews → 1
Ro
k → 1 . 1 . .

Video → . 2

1

2

3

· · ·

4

· · ·

5

· · ·

6

7

· · ·

8

· · ·

9

· · ·

Fig. 3. The en
oding of the example of Figure 2 using a weighted binary relation. The null weights are noted by dots
for the sake of readability. Ea
h number in the s
hema of the tree is the preorder rank of the
orresponding node.

(i) Ii
orresponds exa
tly to a subtree with a root x, su
h that the path-s
ore of x is at least the

threshold and ea
h an
estor of x has a path-s
ore lower than the threshold; or

(ii) there is a set S of labels su
h that no label from S is asso
iated with any node in Ii or any of

its an
estors, and su
h that the sum of the maximum possible weights of the remaining labels

is insu�
ient to rea
h the threshold-value:
∑

α/∈S Q(α)µ
R

< t; or
(iii) all the elements in Ii have path-subset smaller than threshold but are not in (ii), i.e. they do

not have a subset S of labels with the properties des
ribed.

In the �rst
ase, Ii
orresponds to a subtree su
h that the path-s
ore of the root x is at least the

threshold, so that x is in the result set and all its des
endant
an be ignored. In the se
ond
ase,

Ii
orresponds to a blo
k of
onse
utive nodes in preorder that do not mat
h enough labels to have

su�
ient weight, even assuming that all other labels
ontribute maximum possible value µ
R
to their

path-s
ore. In the third
ase, Ii
onsists of node(s) whose path-s
ore is less than the threshold as

in the se
ond
ase, but that do not have a subset of labels mentioned above, i.e. they would have

gotten path-s
ore of threshold or more, if all the labels asso
iated with them or their root path had

ontributed µ
R
ea
h.

As for binary relations, we de�ne the alternation as the size δ of the smallest possible partition-

erti�
ate of the instan
e and use it to analyze the
omplexity of our algorithm.

If we
onsider the weighted tree at Figure 3, the weighted query of Figure 4 with a threshold-

value t = 5, and µ
R

= 3, we get the minimal partition-
erti�
ate shown at Figure 5. This partition-

erti�
ate
ontains all three possible types of intervals. The interval {2, . . . , 5} is the whole subtree

with the root {2} that has enough path-s
ore: path_score(2) = 3 × 1 + 2 × 2 = 7 > 5. The
intervals {1} and {6, . . . , 8} are intervals that have a subset of labels S = {Musi
,Pop,Previews}
not asso
iated with any node and that is large enough to guarantee that no nodes
an have path-s
ore

of at least t: µ
R

∑
α/∈S Q(α) = 3 × 1 = 3 < 5 = t. And the interval {9} has a set S ∈ {Musi
,Pop}

that is not large enough, but whose single node does not have enough weight either.

Barbay et al. [5℄ proved that any randomized algorithm performs Ω(δk) sear
h operations in the

worst
ase over (unweighted) path subset queries of k labels and of alternation δ. This is a parti
ular

ase of weighted threshold path-subset queries, where µ

R
= µ

Q
= 1 and where the threshold-value

t is the number k of labels α of non-null weight Q(α). We propose an optimal algorithm for the

ases with arbitrary values for µ
R
, µ

Q
and t, restri
ted only in the weights assigned to labels in the

multi-labeled tree:

Theorem 2. Consider a tree T , a weighted binary relation R : [σ] × [n] → {0, . . . , µ
R
} assigning

path non-in
reasing weighted labels to the nodes of T , a weighted query Q : [σ] → {0, . . . , µ
Q
}, and

8

Keywords: (α ∈ Q) Home Musi
 Pop Previews
Weights: (Q(α)) 1 2 1 1

Fig. 4. An example of the weighted
onjun
tive
query of 4 words.

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Home → 3 → 3 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
Musi
 → . 2 → . 2 ∗ ∗ ∗

Pop → . . . 1 1 → . . . 1 1

Previews → 1 → 1

Fig. 5. An example of the minimal partition-

erti�
ate for the weighted tree and weighted query
des
ribed above and the t = 5. This partition-

erti�
ate has all three possible types of intervals.
The alternation of the instan
e is δ = 4, the number
of intervals of a partition-
erti�
ate.

a non-negative integer t. There is an algorithm that
omputes the threshold set for Q on T and R
with threshold-value of t in O(δk) sear
h and priority queue operations, where δ is the alternation

of the instan
e and k is the number of labels of positive weight in Q.

Proof (of Theorem 2). Consider the steps of Algorithm 3: given a query Q with k positive weights

and a threshold-value t, the algorithm
omputes the set of the highest nodes with a path-s
ore of

at least t in a tree T labeled by a weighted binary relation R.

The algorithm pro
eeds along the nodes of the tree in in
reasing order (a

ording to the preorder

de�ned on the tree). At ea
h phase it
onsiders a node x and
omputes the minimum possible path-

s
ore score_min and the maximum possible path-s
ore score_max for it. If score_min ≥ t, it
is in the threshold subset path. The algorithm puts it to the output and starts the next phase by

pro
eeding to the �rst su

essor of x that is not one of its des
endants, i.e. the algorithm skips

the whole subtree rooted with the node x. If t > score_max the node x is guaranteed to have the

path-s
ore smaller than the threshold, thus the algorithm pro
eeds to the next node in the tree that

might be in the threshold subset path �nishing the
urrent phase as well.

The de
ision about the
urrent node is made based on the division of the set of labels of positive

weights into three disjoint sets: YES, MAYBE and NO.

� YES
onsists of the labels already known to be asso
iated with the
urrent node x or one of its

an
estors.

� MAYBE
onsists of the labels that we do not know yet whether they are asso
iated with the

urrent node x or one of its des
endant or not. This set is implemented as a queue so that ea
h

label in it is retrieved equally often.

� NO
onsists of the labels that are known not to be asso
iated with the
urrent node x nor any

of its an
estors. This set is implemented by a priority queue with at most k elements, and the

labels in it are ordered by the preorder number of the �rst α-su

essor xα of the
urrent node x.

The values of score_min and score_max here depend not only on the labels assigned

to x, but also on the labels assigned to its an
estors, and are
omputed as score_min =∑
α∈YES Q(α) maxy∈ancestors(x)∪{x} R(α, y) and score_max = score_min +

∑
α∈MAYBE Q(α)µ

R
.

After making a de
ision about the node x, Algorithm 3 updates the node (through Algorithm 4)

and �nds the next node x to advan
e to. It performs the sear
h for the next node x in the similar

to the
ase of binary relations way, ex
ept that now it should move some labels from set NO to set

MAYBE as well, be
ause the node x might have been already in
reased by Algorithm 3, in the
ase of

9

the phase where the algorithm is pro
essing an interval
onsisted of the whole subtree with a root

node in the answer set.

The
omplexity analysis of the algorithm is very similar to the one provided in Theorem 1. We

onsider the algorithm at ea
h phase and how it pro
esses ea
h type of intervals in the minimal

partition-
erti�
ate, and prove that for ea
h phase the algorithm does at most O(k) sear
h and

priority queue operations. While the number of intervals is δ, we
ome up with the total
omplexity

of O(δk). ⊓⊔

Algorithm 3 Algorithm answering Threshold Path-Subset queries

Set x to −∞, NO and YES to ∅ and MAYBE to the set of all labels of non-null weight;
Update(x, YES, NO, MAYBE, score_min, score_max) using Algorithm 4;
while x < ∞ do

Set α to the next label from MAYBE in round robin order, and dedu
t µ
R

Q(α) from score_max;
if x or one of its an
estors is labeled α then

Move α from MAYBE to YES;
Find y, the
losest to the root an
estor of x with the label α;
Add Q(α)R(α, y) to score_min and score_max;
if t ≤ score_min then

Output x;
Update x to its �rst preorder su

essor whi
h is not one of its des
endants;

end if
else

Move α from MAYBE to NO;
end if
if t ≤ score_min or t > score_max then

Update(x, YES, NO, MAYBE, score_min, score_max);
end if

end while

Algorithm 4 Update(x, YES, NO, MAYBE, score_min, score_max)
Move all the labels from YES to the set MAYBE;
Move ea
h label α from NO that has α-su

essor less than
urrent node x to the set MAYBE;
Set score_max to

P

α∈MAYBE
Q(α)µ

R
;

Choose a label α in round-robin order from MAYBE;
while score_max− Q(α)µ

R
≥ t do

Dedu
t Q(α)µ
R
from score_max, and move α from MAYBE to NO;

Choose a label α in round-robin order from MAYBE;
end while
Find the subset S ⊂ NO of labels α su
h that the preorder su

essor of x among the nodes labeled α is minimal;
Move all the labels of S from NO to YES, and set score_min to

P

α∈YES
Q(α)maxy∈ancestors(x)∪{x} R(α, y)

Update x to its preorder su

essor among the nodes labeled α, for any label of YES;

5 Dis
ussion

In the
ontext of the sear
h in binary relations, su
h as the one asso
iating labels with obje
ts (e.g.

keywords with webpages), we identi�ed the intuition behind previous work on threshold set queries

10

in binary relations [6℄ and applied it in mu
h more general
ontexts: where weights are asso
iated

with the terms of the query and with the relation between obje
ts and labels.

In the
ontext of the sear
h in a multi-labeled tree of unknown s
hema, su
h as one representing

the index of a �le system, we applied the threshold set
on
ept to path-subset queries [5℄. In both

ontexts we de�ne queries whi
h are more informative than the queries previously
onsidered, while

being not substantially more expensive to answer.

The
on
ept of weighted threshold set queries
an be applied to some other type of s
hema-free

queries on multi-labeled trees, among whi
h we des
ribe three in parti
ular:

� additive path-subset queries, whi
h are similar to path-subset queries but with a di�erent s
ore

fun
tion, where for ea
h node x the
ontribution of its an
estors labeled α adds up to form its

s
ore;

� path-subsequen
e queries, whi
h are similar to path-subset queries but with a required order

on the labels of the query (obviously, the path-s
ore
an then be de�ned in an additive or

non-additive way);

� labeled lowest
ommon an
estor, where the des
endants of a node
ontribute to its s
ore, rather

than its an
estors (the
on
ept was already de�ned without threshold nor weights [12, 16, 17℄).

As threshold set queries generalize
onjun
tive queries, for whi
h many algorithms have been

studied [3, 4, 8, 9℄, many other algorithms should be
onsidered, some of whi
h
ould take advantage

of properties of the instan
es other than those des
ribed by the alternation measure of di�
ulty.

Although the adaptive analysis is �ner than a typi
al worst
ase analysis, its value for a par-

ti
ular appli
ation depends of the appropriateness of the
orresponding di�
ulty measure: some

experimentations will be ne
essary. It is reasonably easy to generate a weighted index, for instan
e

by assigning di�erent weights to the labels asso
iated with the links to a webpage, in the title or in a

simple paragraph. It will be harder to generate realisti
 user queries for the threshold set: the users

usually use
onjun
tive queries and adapt their queries to the type of results returned. In parti
ular,

they give a small number of keywords to avoid re
eiving a null answer. One solution is to
onsider

onjun
tive queries extended with some labels of small weight,
orresponding to the pro�le of the

user: su
h queries would help to adjust the answer to the initial
onjun
tive query based a

ording

to the user preferen
es.

Referen
es

[1℄ S. Amer-Yahia, S. Cho, and D. Srivastava. Tree pattern relaxation. In Extending Database

Te
hnology, pages 496�513, 2002.

[2℄ A. A. Andersson and M. Thorup. Tight(er) worst-
ase bounds on dynami
 sear
hing and

priority queues. In STOC '00: Pro
eedings of the thirty-se
ond annual ACM symposium on

Theory of
omputing, pages 335�342, New York, NY, USA, 2000. ACM Press.

[3℄ R. A. Baeza-Yates. A fast set interse
tion algorithm for sorted sequen
es. In Pro
eedings of the

15th Annual Symposium on Combinatorial Pattern Mat
hing (CPM), volume 3109 of Le
ture

Notes in Computer S
ien
e (LNCS), pages 400�408. Springer, 2004.

[4℄ R. A. Baeza-Yates and A. Salinger. Experimental analysis of a fast interse
tion algorithm for

sorted sequen
es. In Pro
eedings of 12th International Conferen
e on String Pro
essing and

Information Retrieval (SPIRE), pages 13�24, 2005.

11

[5℄ J. Barbay, A. Golynski, J. I. Munro, and S. S. Rao. Adaptive sear
hing in su

in
tly en
oded

binary relations and tree-stru
tured do
uments. ELSEVIER Theoreti
al Computer S
ien
e

(TCS), O
tober 2007.

[6℄ J. Barbay and C. Kenyon. Adaptive interse
tion and t-threshold problems. In Pro
eedings of

the 13th ACM-SIAM Symposium on Dis
rete Algorithms (SODA), pages 390�399. So
iety for

Industrial and Applied Mathemati
s (SIAM), January 2002.

[7℄ G. Bordogna and G. Pasi. Modeling vagueness in information retrieval. In M. Agosti,

F. Crestani, and G. Pasi, editors, ESSIR, volume 1980 of Le
ture Notes in Computer S
ien
e,

pages 207�241. Springer, 2000.

[8℄ E. D. Demaine, A. López-Ortiz, and J. I. Munro. Adaptive set interse
tions, unions, and

di�eren
es. In Pro
eedings of the 11th ACM-SIAM Symposium on Dis
rete Algorithms (SODA),

pages 743�752, 2000.

[9℄ E. D. Demaine, A. López-Ortiz, and J. I. Munro. Experiments on adaptive set interse
tions for

text retrieval systems. In Pro
eedings of the 3rd Workshop on Algorithm Engineering and Ex-

periments, volume 2153 of Le
ture Notes in Computer S
ien
e (LNCS), pages 5�6, Washington

DC, January 2001.

[10℄ R. F. Geary, R. Raman, and V. Raman. Su

in
t ordinal trees with level-an
estor queries. In

Pro
eedings of the 15th Annual ACM-SIAM Symposium on Dis
rete Algorithms (SODA), pages

1�10, 2004.

[11℄ G. Ja
obson. Spa
e-e�
ient stati
 trees and graphs. In Pro
eedings of the 30th IEEE Symposium

on Foundations of Computer S
ien
e (FOCS), pages 549�554, 1989.

[12℄ Y. Li, C. Yu, and H. V. Jagadish. S
hema-free XQuery. In VLDB, 2004.

[13℄ D. Okanohara and K. Sadakane. Pra
ti
al entropy-
ompressed rank/sele
t di
tionary. In

Pro
eedings of the 14th International Workshop on Algorithms and Data Stru
tures (WADS),

volume 1671 of Le
ture Notes in Computer S
ien
e (LNCS). Springer-Verlag, 2007.

[14℄ R. Raman, V. Raman, and S. S. Rao. Su

in
t indexable di
tionaries with appli
ations to

en
oding k-ary trees and multisets. In Pro
eedings of the 13th Annual ACM-SIAM Symposium

on Dis
rete algorithms, pages 233�242, 2002.

[15℄ K. Sadakane and R. Grossi. Squeezing su

in
t data stru
tures into entropy bounds. In

Pro
eedings of the 17th annual ACM-SIAM symposium on Dis
rete algorithm, pages 1230�

1239, 2006.

[16℄ A. S
hmidt, M. L. Kersten, and M. Windhouwer. Querying XML do
uments made easy: Nearest

on
ept queries. In ICDE, pages 321�329, 2001.

[17℄ Y. Xu and Y. Papakonstantinou. E�
ient keyword sear
h for smallest LCAs in XML databases.

In SIGMOD '05: Pro
eedings of the 2005 ACM SIGMOD international
onferen
e on Manage-

ment of data, pages 527�538, New York, NY, USA, 2005. ACM Press.

[18℄ F. Yergeau, T. Bray, J. Paoli, C. M. Sperberg-M
Queen, and E. Maler. Extensible Markup

Language (XML) 1.0 (third edition). Te
hni
al report, W3C Re
ommendation, February 2004.

12

