Adaptive Algorithm for
Threshold Path Subset Queries

Jérémy Barbay! and Aleh Veraskouski?

! DCC (Departamento de Ciencias de la Computacion),
Universidad de Chile, Santiago, Chile.
jbarbay@dcc.uchile.cl
2 CSCS (Cheriton School of Computer Science)
University of Waterloo, Canada.
averasko@cs.uwaterloo.ca
(graduated, now working for Amazon)

Abstract. In the context of queries to indexed search engines such as Google, Barbay and Kenyon [6]
introduced and solved threshold set queries, answered by the set of references associated with at least
t keywords out of the k given as input, for some constant parameter t. We sligthly generalize those
results to the easy case where weights are associated to the keywords of the query, and to the more
difficult case where weights are associated to the pairs of the relation between keywords and references.
In the context of search queries on indexed file systems, Barbay et al. [5] introduced and solved path-
subset queries, answered by the minimum set of subtrees which rooted path match all k£ keywords given
as input. We combine both approaches to define and solve weighted threshold path-subset queries,
answered by the minimum set of subtrees which rooted path match at least ¢ keywords out of the k
given as input, through the definition of a reduction to threshold queries.

Keywords. Adaptive algorithms, weighted threshold path-subset queries, multi-
labeled tree.

1 Introduction

Consider the task of a search engine answering conjunctive queries: given a set of keywords, it
must return a list of references to the objects relevant to all those keywords. These objects can be
web-pages as in the case of a search engine such as Google or Yahoo!, documents as in a file system,
or any other kind of data searched by keywords. A search engine typically uses a precomputed index,
representing a binary relation between the set of n objects and the set of o admissible keywords, or a
labeled tree indexing a file system. Conjunctive queries are schema-free [12, 16|: they can be written
without making any assumption about the structure of the document (e.g. its schema in XML [18]
documents). This is important in applications where many documents with many different schemes
must be searched [1].

Adaptive algorithms take advantage of “easy” instances, i.e. their run-time depends on some
measure of the difficulty of the instance. Demaine et al. [8] considered some applications to queries
on postings lists and studied adaptive algorithms for the union, intersection and difference of sets
represented by sorted arrays.

We counsider weighted queries on both weighted binary relations and weighted labeled trees,
based on the definition of a score function on the objects of a binary relation or on the nodes of a
tree. We propose adaptive algorithms for two types of weighted queries: on weighted binary relations
and on weighted labeled trees with path non-increasing weights. For each result, we measure the
complexity by the number of search and priority queue operations performed.

The rest of the article is organized as follows. We describe the results that we either use, gener-
alize, or improve upon in Section 2, in two categories: data structures (Section 2.1) and algorithms
(Section 2.2). We describe our results on weighted binary relations in Section 3, and our results on
trees with weighted labels in Section 4. Section 5 gives a discussion of the results.

2 Previous Work and Extensions

Various algorithms have been proposed to solve unweighted schema-free queries on binary relations,
labeled trees, and other data structures. We review some examples of the data structures considered,
and which queries and algorithms our solutions extend.

2.1 Data Structures

A binary relation between two ordered sets, such as one associating labels with objects, can be
encoded as a set of sorted arrays called postings lists. In this case, the answer to a conjunctive
query is the intersection of the subsets corresponding to those arrays. A binary search finds the
insertion rank 3 of a particular element in a sorted array of n, elements in time O(Ign,), and a
straightforward variant can be used to search the positions of a set of § increasing values in time
O(51z(na/9)) [6].

A binary relation can also be encoded as a set of compressed bit-vectors [13, 15|, supporting
the search of the insertion rank of a particular element in constant time, at the price of space; or
using less space at the cost of time [5]. Similarly, a priority queue can be implemented using various
data structures, for instances based on sorted arrays or succinct encodings in the word-RAM model.
While a trivial pointer-based tree structure with & elements will result in O(lg k) comparisons per
insertion or deletion in the worst-case, the more advanced structure described by Andersson and
Thorup [2] has only O((lglg k)?) per insertion or deletion amortized.

Considering the variety of data structures that can be used to implement binary relations and
priority queues, each of them with a different trade-off between the space used and the time required
to search in it, we express the complexity of our algorithms in the number of search and priority
queue operations performed, so that the complexity of the algorithm can be inferred for each data
structure.

The same holds for labeled trees, such as XML documents or an index of a file system, as
their encoding can be reduced to the encoding of the tree structure and of the binary relation
associating the nodes in preorder to one or more label. Many efficient encodings are known for
ordinal trees [10, 11, 14|, and any encoding can be used to implement the binary relation and support
the search for the first ancestor or the next descendant of a node x matching some label a [5].

2.2 Queries and Algorithms

Conjunctive queries are well known. Indeed, most search engines implement them. Given a list of
labels (e.g. keywords), the answer consists of all the objects (e.g. webpage references) which are
associated with all of the labels. Given an index such as described in the section above, solving a
conjunctive query composed of k labels implies computing the intersection of k rows in a binary
relation, which is a well studied problem [3, 4, 8, 9]

As an empty intersection can be an uninformative answer to a conjunctive query, we should
consider other approaches. Researchers in information retrieval suggest a number of ways to deal

3 The insertion rank of an element in a set X is the rank (the linear order) of x in the set X U {z}.

with this problem. For example, one can relax both queries and document index in a number of
different ways that are summarized by Bordogna and Pasi [7|. Barbay and Kenyon [6] proposed the
adaptive algorithm to answer the query where for a given parameter ¢ the answer consists of the
references matching at least ¢ of the k labels composing the query. Given an index such as described
in the section above, solving this new type of query implies computing the threshold set of k rows
in a binary relation, the set of objects associated with at least ¢ labels among the k specified.

We extend further this type of query to weighted threshold queries, by considering weighted
queries @ : [0] — {0,..., uy}, where o is the number of admissible keywords, and weighted binary
relations R : [0] x [n] — {0,...,u,} % The score of an object x relative to a query Q on a relation R
is then defined as the linear combination of those weights, i.e. score(R, Q,z) = }_, ¢y @() (e, @),
that corresponds to the notion of the Retrieval Status Value (or RSV) described by Bordogna and
Pasi |7|. The answer to a query with parameter ¢ is the set of objects with score at least ¢: this
definition matches the original one from Barbay and Kenyon when each weight is either null or
unitary (the unweighted case).

On labeled trees, one possible adaptation of the idea of conjunctive query is the path-subset
query [5]. Given a set of k labels, the answer to such a query consists of the set of nodes whose
path to the root matches all the labels and that do not have any ancestors with such a property.
We extend this type of queries further to weighted threshold path-subset queries, by considering
weighted queries and weighted binary relations between labels and nodes in a tree (see Section 4
for the formal definition).

3 Queries on Binary Relations

We propose an adaptive algorithm to answer weighted threshold queries on weighted binary
relations. It generalizes the original algorithm proposed for threshold queries on binary relations in
the unweighted case [6], and its analysis is based on similar concepts, formalized and extended to
the weighted case.

Any algorithm answering weighted threshold queries has to check the correctness of its result, by
certifying that each object in the answer set has score at least the threshold. Rather than considering
each object separately (which would require time linear in the total number of possible objects), an
algorithm must consider whole blocks of consecutive objects at once in order to achieve a sublinear
complexity. We formalize this by the notion of partition-certificate of an instance: a partition (I;);c(s
of the set [n] of all objects, such that for any i € [§] either there is a set S of labels such that no
object of I; is associated with a label in S, and the maximum potential score of any of these objects
Iy D ags @(a) is less than the ¢; or I; is a single object {} (whose score can be larger or smaller than
the threshold). The presence of singletons whose elements are not in the result set, is unavoidable
in the weighted case, where an object can, for instance, be associated with all possible labels and
still not score enough to be in the result set.

There are several ways to define the difficulty of an intersection instance, such as the minimal
encoding size of a certificate [8], or the minimal number of comparisons [6]. We define the alternation
of a weighted threshold set instance as the size § of the smallest possible partition-certificate of
the instance. The alternation is related to the non-deterministic complexity of the instance, as it
corresponds to the complexity of a non-deterministic algorithm which would produce the shortest

4 By [m] we denote {1,...,m} for any integer number m.

partition-certificate of the instance. In the unweighted case (where all weights are unitary), if no
object match the query then the alternation is exactly the non-deterministic complexity of the
instance, i.e. the complexity of the best non-deterministic algorithm checking the answer to the
query.

12134567)89101112 13|14 1516 1718
12|115(17 — 1 .|. 1.1 .1 (.1 .1
911|113 — . 1j.1.1.4.1 . 1 . 1
14]16{18| —

—
[0
[
o

Music —
Jazz —|2

Rock —

~
[=2]

w
ot
N

Fig. 1. An example of how a conjunctive query composed of three keywords corresponds to the intersection
of the three corresponding sets. The alternation of the instance is § = 4, the number of intervals of a
partition certificate where each interval has an empty intersection with at least one of the sets. Barbay
and Kenyon’s algorithm performs 7<§k=12 searches (for the numbers 1,2, 3,8,9,14, 15).

Barbay and Kenyon [6] proved that any randomized algorithm performs §2(dk) searches in the
worst case over instances of difficulty ¢ on k labels, and proposed an optimal deterministic algorithm
for the unweighted case on sorted arrays. We analyze the complexity of the algorithms in terms of
search and priority queue operations, where a priority queue operation is either an insertion or a
deletion from a priority queue, and where each search operation is a search for the particular object
in a data structure representing an ordered list of objects. We propose an optimal algorithm for the
weighted case with any data structure supporting the search for the insertion rank in an indexed
set:

Theorem 1. Consider a weighted binary relation R : [o] X [n] — {0,...,u,}, a weighted query
Q : [o] = {0,...,p5}, and a non-negative integer t. There is an algorithm that computes the
threshold set for Q on R with threshold-value of t in O(0k) search and priority queue operations,
where § is the alternation of the instance and k is the number of labels of positive weight in Q.

Algorithm 1 Algorithm answering Threshold Set queries

Set x to —oco, NO and YES to () and MAYBE to the set of all labels of non-null weight;
Update(x, YES,NO, MAYBE, score min, score max) using Algorithm 2;
while z < co do
Set a to the next label from MAYBE in round robin order, and deduct p,@Q(«) from score max;
Search for the insertion rank of x among the objects labeled «;
if x is associated with a label a then
Move « from MAYBE to YES;
Add Q(a)R(«,x) to score min and score max;
if t < score_min then Output z;
else
Move « from MAYBE to NO;
end if
if t < score_min or ¢t > score_max then
Update(x, YES,NO,MAYBE, score min, score max);
end if
end while

Proof (of Theorem 1). Consider the steps of Algorithm 1: given a query @ with k positive weights
and a threshold-value ¢, the algorithm computes the set of objects scoring at least ¢ for a weighted
binary relation R associating objects with labels.

Our algorithm goes through a number of phases. At each phase it considers one object x, in
increasing order, and bounds its score by an interval [score min,score max|. The algorithm can
decide whether = belongs to the result set through this interval and without computing the object’s
exact score (t < score min < score(z)). On the other hand, if for a given interval of consecutive
objects there is a set of labels not associated with any of them with large total weight, this interval
certifies that none of those objects belongs to the result set (score(z) < score max < t). The key
issue of the algorithm is the choice of the values of x and of the labels to consider.

This choice is described in Algorithm 2, which is based on the decomposition of the set of labels
of positive weights in three disjoint sets: YES, MAYBE and NO:

— YES corresponds to the labels already known to be associated with the current value of x. It can
be implemented as a simple set, for instance in an array.

— MAYBE corresponds to the labels which could be associated with the current value of x. It is
implemented as a FIFO queue so that each label in it is considered equally often.

— NO corresponds to the labels which are known not to be associated with the current value of x.
It is implemented as a priority queue of at most k elements, and the labels « it contains are
ordered by the value of the first object larger than = associated with label «.

The values of the bounds score min and score max on the potential score of z are direct
consequences of those definitions: score min depends on the weights of the labels in YES, i.e.
score_min =) yps Q(a)R(c, z); and score max adds the maximum potential weights of the
labels in MAYBE to score_min, i.e. score_max = score_min + > cvayps Q(Q) 1ty

To choose a new value for z, the algorithm removes labels from the set MAYBE till it reaches a
critical weight, where removing any other label would make it impossible for an object matching
only the labels of MAYBE to score above the threshold. Then, the smallest object potentially in the
result set corresponds to the first label of the priority queue implementing set NO.

Consider a phase of the execution where the algorithm is processing an interval of the partition-
certificate consisting of only one object x. Algorithm 1 performs at most k iterations of the main
loop to decide whether = has enough score or not without updating x (through Algorithm 2). Once
the decision about x is made, the algorithm updates = and moves to the next phase. Updating of
x takes not more than k loop iterations of Algorithm 2. Thus during each phase, the algorithm
performs at most O(k) search and priority queue operations.

Consider a phase corresponding to the interval of the partition-certificate that does not have any
objects with enough score and a subset S of labels that are not associated with any of the objects
in this interval. Algorithm 1 may update x more than once during the same phase. We prove the
upper bound on the number of operations through considering the way the algorithm moves labels
from one set to another.

The only way Algorithm 1 moves labels is from set MAYBE to either set YES or set NO. Algorithm 2,
on the other hand, move labels from YES to MAYBE, from MAYBE to NO, and from NO to YES in this
order. As it cannot move labels that are in S to YES, the algorithm has the only possible loop
MAYBE — NO — YES — MAYBE for these labels.

However, the algorithm does not move any labels from S that it already moved to NO during
the processing of the same interval, because the label’s successor is out of the current interval and
cannot be processed in the current phase. While the algorithm retrieves labels from set MAYBE in

round-robin order, it cannot retrieve any label from set MAYBE for the second time until all the labels
from subset S appear in set NO, which effectively means that the next element x will be outside of
the interval and the algorithm proceeds to the new phase. While it takes a constant time for the
algorithm to move each label from set MAYBE back to set MAYBE, it needs O(k) search and priority
queue operations to complete this phase.

As the algorithm spends O(k) to complete any phase, and any instance has § intervals that
correspond to ¢ phases, the total complexity of the algorithm is O(dk). O

Algorithm 2 Update(z, YES,NO, MAYBE, score min,score max)

Add all the labels from YES to the set MAYBE and set score max to Y cyviyge Q(Q)fig;
Choose a label « in round-robin order from MAYBE;
while score max — Q(a)u, >t do
Deduct Q(a)py, from score max, and move o from MAYBE to NO;
Choose a label « in round-robin order from MAYBE;
end while
Find the subset S C NO of labels « such that the successor of x among the objects labeled « is minimal;
Move all the labels of S from NO to YES, and set score_min to) vz @) R(c,);
Update x to its successor among the objects labeled «, for any label in YES;

Note that k is the number of labels with a positive weight (i.e. non-null). If the binary relation is
implemented by postings lists, and the priority queue is implemented using a heap, the complexity
of the algorithm is O(dk1g(n/(dk))+ dklg k), where n is the sum of the sizes of all postings lists and
k is the maximum size of the priority queue. If the binary relation is implemented using Barbay et
al.’s [5] succinct encoding and the priority queue is implemented using Andersson and Thorup’s [2]
structure, the complexity of the algorithm is O(sklglgo + 6k(Iglgk)?) in the RAM model with
word size O(lg max{o,n}).

4 Queries on Labeled Trees

The main idea of path-subset queries [5] is that the effect of labels associated with nodes “propa-
gates” to the descendants of nodes. We extend this concept through the definition of a score function
on the nodes of the tree that depends on the labels associated with a node and its ancestors, and
on the weight of these associations.

Formally, given a query @ on a tree T labeled through the relation R, the path-score of a node
x is defined as the sum of maximum values of Q(«)R(c,y) for each node y which is = or one of its
ancestors, over all labels a € [o]. Each label is counted only once, i.e. a label a contributes only
maxy R(c,y) to node z, where y is x or one of its ancestor. This defines the path-score of = as

path score(T,R,Q,z) = Z Q(a) max R(a,y).

aclo] yE€ancestors(z)U{x}

Combining this score function on nodes with the concept of weighted threshold set queries in
the context of weighted labeled trees brings the concept of weighted threshold path-subset queries,

home

3
Music Video
2 2
Classical Pop Jazz || Pop Rock || Rock Concerts || Jazz Previews
1 1 1 1 1 1 1 1 1

Fig. 2. An example of a simple file system. Each node represents a folder and contains the words associated with it,
along with the weight of these associations.

answered for a given parameter ¢ by the set of nodes of path-score at least ¢ that do not have any
ancestor matching this property.

We propose an algorithm to solve these queries in the case where the labels are associated
with the nodes on the same root-to-leaf path with non-increasing weights, i.e. there is no such a
node z that has a label a associated with it with some weight R(z, «) and that has a descendant 2’
associated with the same label with larger weight R(2/, &) > R(z, «). This non-increasing restriction
does not restrict instances where the weights of the labels of the tree are all null or unitary: in both
cases trees are non-increasing by definition.

This restriction makes the contribution of a label « to the path-score of a node x depend only
on the weight of the closest to the root ancestor of the node = associated with the label «, instead
of depending on the arbitrary one with the large weight of its association with the label «. To solve
weighted threshold path-subset queries in the general case, an algorithm would have to compute
MAaXy cancestors(z)U{z} 11(, y) regularly, which makes it more complex.

We describe an adaptive analysis of the complexity of our algorithm by using a measure of
difficulty inspired by the partition-certificates and alternation, as defined for queries on binary
relations. As before, any algorithm answering a weighted threshold path-subset query has to check
the correctness of its result. For this query-type, it corresponds to producing a certificate that each
node in the answer set has a path-score of at least the threshold, and that each node that is not
in the answer set either has an ancestor that is in this set or has a path-score smaller than the
threshold.

Any order of the nodes can be used to easily define sets of nodes that cannot belong to the
answer set. As threshold path-subset queries are based solely on the ancestor-descendant relation
between nodes, we propose an analysis based on the preorder traversal of the tree, in which all the
descendants of a node are consecutive. As Figure 2 represents an example of the file system with
nodes corresponding to files and folders and labels corresponding to their names, Figure 3 represents
the binary encoding of it.

We generalize the concept of the partition-certificate, introduced on binary relations, to multi-
labeled trees as a partition (I;);c[s of the set [n] of all nodes, such that for any i € [0] either

7

Classical
Concerts
Home

Jazz
Music
Pop
Previews
Rock
Video

L R A A A

Fig. 3. The encoding of the example of Figure 2 using a weighted binary relation. The null weights are noted by dots
for the sake of readability. Each number in the schema of the tree is the preorder rank of the corresponding node.

(i) I; corresponds exactly to a subtree with a root x, such that the path-score of x is at least the
threshold and each ancestor of x has a path-score lower than the threshold; or
(ii) there is a set S of labels such that no label from S is associated with any node in I; or any of
its ancestors, and such that the sum of the maximum possible weights of the remaining labels
is insufficient to reach the threshold-value: ¢ Q(a)p, <t; or
(iii) all the elements in I; have path-subset smaller than threshold but are not in (ii), i.e. they do
not have a subset S of labels with the properties described.

In the first case, I; corresponds to a subtree such that the path-score of the root x is at least the
threshold, so that x is in the result set and all its descendant can be ignored. In the second case,
I; corresponds to a block of consecutive nodes in preorder that do not match enough labels to have
sufficient weight, even assuming that all other labels contribute maximum possible value j,, to their
path-score. In the third case, I; consists of node(s) whose path-score is less than the threshold as
in the second case, but that do not have a subset of labels mentioned above, i.e. they would have
gotten path-score of threshold or more, if all the labels associated with them or their root path had
contributed p, each.

As for binary relations, we define the alternation as the size 0 of the smallest possible partition-
certificate of the instance and use it to analyze the complexity of our algorithm.

If we consider the weighted tree at Figure 3, the weighted query of Figure 4 with a threshold-
value t = 5, and p, = 3, we get the minimal partition-certificate shown at Figure 5. This partition-
certificate contains all three possible types of intervals. The interval {2,...,5} is the whole subtree
with the root {2} that has enough path-score: path score(2) = 3 x1+2x2 =7 > 5. The
intervals {1} and {6,...,8} are intervals that have a subset of labels S = {Music, Pop, Previews}
not associated with any node and that is large enough to guarantee that no nodes can have path-score
of at least ¢: pu; 35 0g Q(e) =3 x 1 =3 < 5=t And the interval {9} has a set S € {Music, Pop}
that is not large enough, but whose single node does not have enough weight either.

Barbay et al. [5] proved that any randomized algorithm performs (2(dk) search operations in the
worst case over (unweighted) path subset queries of k labels and of alternation ¢. This is a particular
case of weighted threshold path-subset queries, where i, = p1, =1 and where the threshold-value
t is the number k of labels « of non-null weight Q(«). We propose an optimal algorithm for the
cases with arbitrary values for p,, p, and ¢, restricted only in the weights assigned to labels in the
multi-labeled tree:

Theorem 2. Consider a tree T, a weighted binary relation R : [o] x [n] — {0,...,u,} assigning
path non-increasing weighted labels to the nodes of T', a weighted query Q : [o] — {0,...,u,}, and

1[2[3[4[5[6]7[8]9] 1|23 45|67 8|9

Home —{3|.|.[.[.|.|.|-]-] = 3% % % *|* * %[x

Music —|. (2| ||| |- |-[-| = |2 % *x*|. . .]|.

Pop —f.|. | |L|1].]|.|-|-| — |- - 12 1f. . .|.

Keywords: (a € Q)|Home|Music|Pop|Previews Previews — 111 11T 1= .| . | .. 1

Weights: (Q(a)) 1 2 1 1

Fig.5. An example of the minimal partition-
certificate for the weighted tree and weighted query
described above and the ¢ = 5. This partition-
certificate has all three possible types of intervals.
The alternation of the instance is § = 4, the number
of intervals of a partition-certificate.

Fig.4. An example of the weighted conjunctive
query of 4 words.

a non-negative integer t. There is an algorithm that computes the threshold set for @Q on T and R
with threshold-value of t in O(dk) search and priority queue operations, where 0 is the alternation
of the instance and k is the number of labels of positive weight in Q).

Proof (of Theorem 2). Consider the steps of Algorithm 3: given a query) with k positive weights
and a threshold-value ¢, the algorithm computes the set of the highest nodes with a path-score of
at least t in a tree T labeled by a weighted binary relation R.

The algorithm proceeds along the nodes of the tree in increasing order (according to the preorder
defined on the tree). At each phase it considers a node = and computes the minimum possible path-
score score min and the maximum possible path-score score max for it. If score min > ¢, it
is in the threshold subset path. The algorithm puts it to the output and starts the next phase by
proceeding to the first successor of x that is not one of its descendants, i.e. the algorithm skips
the whole subtree rooted with the node z. If t > score max the node z is guaranteed to have the
path-score smaller than the threshold, thus the algorithm proceeds to the next node in the tree that
might be in the threshold subset path finishing the current phase as well.

The decision about the current node is made based on the division of the set of labels of positive
weights into three disjoint sets: YES, MAYBE and NO.

— YES consists of the labels already known to be associated with the current node x or one of its
ancestors.

— MAYBE consists of the labels that we do not know yet whether they are associated with the
current node x or one of its descendant or not. This set is implemented as a queue so that each
label in it is retrieved equally often.

— NO consists of the labels that are known not to be associated with the current node z nor any
of its ancestors. This set is implemented by a priority queue with at most k elements, and the
labels in it are ordered by the preorder number of the first a-successor xz,, of the current node x.

The values of score min and score max here depend not only on the labels assigned
to x, but also on the labels assigned to its ancestors, and are computed as score min =
> aeves @(Q) MaXycancestors(x)ufa} F2(a, y) and score max = score min+) cyuype Q()py-

After making a decision about the node z, Algorithm 3 updates the node (through Algorithm 4)
and finds the next node z to advance to. It performs the search for the next node x in the similar
to the case of binary relations way, except that now it should move some labels from set NO to set
MAYBE as well, because the node might have been already increased by Algorithm 3, in the case of

the phase where the algorithm is processing an interval consisted of the whole subtree with a root
node in the answer set.

The complexity analysis of the algorithm is very similar to the one provided in Theorem 1. We
consider the algorithm at each phase and how it processes each type of intervals in the minimal
partition-certificate, and prove that for each phase the algorithm does at most O(k) search and
priority queue operations. While the number of intervals is §, we come up with the total complexity

of O(6k). 0

Algorithm 3 Algorithm answering Threshold Path-Subset queries

Set z to —oco, NO and YES to () and MAYBE to the set of all labels of non-null weight;
Update(x, YES,NO, MAYBE, score min, score max) using Algorithm 4;
while z < co do
Set a to the next label from MAYBE in round robin order, and deduct p,@Q(«) from score max;
if x or one of its ancestors is labeled « then
Move o from MAYBE to YES;
Find y, the closest to the root ancestor of with the label «;
Add Q(a)R(«,y) to score min and score max;
if t < score_min then
Output x;
Update z to its first preorder successor which is not one of its descendants;
end if
else
Move « from MAYBE to NO;
end if
if t < score_min or ¢t > score_max then
Update(x, YES,NO,MAYBE, score min, score max);
end if
end while

Algorithm 4 Update(z, YES,NO,MAYBE, score min,score max)

Move all the labels from YES to the set MAYBE;
Move each label a from NO that has a-successor less than current node z to the set MAYBE;
Set score_max t0 D cyuype @(Q)fig;
Choose a label « in round-robin order from MAYBE;
while score max — Q(a)u, >t do

Deduct Q(a)py, from score max, and move a from MAYBE to NO;

Choose a label « in round-robin order from MAYBE;
end while
Find the subset S C NO of labels « such that the preorder successor of x among the nodes labeled « is minimal;
Move all the labels of S from NO to YES, and set score_min to) yps @() Maxy cancestors(a)u{a} B(, Y)
Update x to its preorder successor among the nodes labeled «, for any label of YES;

5 Discussion

In the context of the search in binary relations, such as the one associating labels with objects (e.g.
keywords with webpages), we identified the intuition behind previous work on threshold set queries

10

in binary relations [6] and applied it in much more general contexts: where weights are associated
with the terms of the query and with the relation between objects and labels.

In the context of the search in a multi-labeled tree of unknown schema, such as one representing
the index of a file system, we applied the threshold set concept to path-subset queries [5]. In both
contexts we define queries which are more informative than the queries previously considered, while
being not substantially more expensive to answer.

The concept of weighted threshold set queries can be applied to some other type of schema-free
queries on multi-labeled trees, among which we describe three in particular:

— additive path-subset queries, which are similar to path-subset queries but with a different score
function, where for each node x the contribution of its ancestors labeled « adds up to form its
score;

— path-subsequence queries, which are similar to path-subset queries but with a required order
on the labels of the query (obviously, the path-score can then be defined in an additive or
non-additive way);

— labeled lowest common ancestor, where the descendants of a node contribute to its score, rather
than its ancestors (the concept was already defined without threshold nor weights [12, 16, 17]).

As threshold set queries generalize conjunctive queries, for which many algorithms have been
studied [3, 4, 8, 9], many other algorithms should be considered, some of which could take advantage
of properties of the instances other than those described by the alternation measure of difficulty.

Although the adaptive analysis is finer than a typical worst case analysis, its value for a par-
ticular application depends of the appropriateness of the corresponding difficulty measure: some
experimentations will be necessary. It is reasonably easy to generate a weighted index, for instance
by assigning different weights to the labels associated with the links to a webpage, in the title or in a
simple paragraph. It will be harder to generate realistic user queries for the threshold set: the users
usually use conjunctive queries and adapt their queries to the type of results returned. In particular,
they give a small number of keywords to avoid receiving a null answer. One solution is to consider
conjunctive queries ezxtended with some labels of small weight, corresponding to the profile of the
user: such queries would help to adjust the answer to the initial conjunctive query based according
to the user preferences.

References

[1] S. Amer-Yahia, S. Cho, and D. Srivastava. Tree pattern relaxation. In Eztending Database
Technology, pages 496513, 2002.

[2] A. A. Andersson and M. Thorup. Tight(er) worst-case bounds on dynamic searching and
priority queues. In STOC ’00: Proceedings of the thirty-second annual ACM symposium on
Theory of computing, pages 335-342, New York, NY, USA, 2000. ACM Press.

[3] R. A. Baeza-Yates. A fast set intersection algorithm for sorted sequences. In Proceedings of the
15th Annual Symposium on Combinatorial Pattern Matching (CPM), volume 3109 of Lecture
Notes in Computer Science (LNCS), pages 400—408. Springer, 2004.

[4] R. A. Baeza-Yates and A. Salinger. Experimental analysis of a fast intersection algorithm for
sorted sequences. In Proceedings of 12th International Conference on String Processing and
Information Retrieval (SPIRE), pages 13—24, 2005.

11

15]

[6]

7]

18]

9]

[10]
[11]
[12]
[13]
[14]

[15]

[16]

[17]

[18]

J. Barbay, A. Golynski, J. I. Munro, and S. S. Rao. Adaptive searching in succinctly encoded
binary relations and tree-structured documents. ELSEVIER Theoretical Computer Science
(TCS), October 2007.

J. Barbay and C. Kenyon. Adaptive intersection and t-threshold problems. In Proceedings of
the 13th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 390-399. Society for
Industrial and Applied Mathematics (SIAM), January 2002.

G. Bordogna and G. Pasi. Modeling vagueness in information retrieval. In M. Agosti,
F. Crestani, and G. Pasi, editors, ESSIR, volume 1980 of Lecture Notes in Computer Science,
pages 207—241. Springer, 2000.

E. D. Demaine, A. Lépez-Ortiz, and J. I. Munro. Adaptive set intersections, unions, and
differences. In Proceedings of the 11th ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 743-752, 2000.

E. D. Demaine, A. Lopez-Ortiz, and J. I. Munro. Experiments on adaptive set intersections for
text retrieval systems. In Proceedings of the 3rd Workshop on Algorithm Engineering and Ez-
periments, volume 2153 of Lecture Notes in Computer Science (LNCS), pages 5—6, Washington
DC, January 2001.

R. F. Geary, R. Raman, and V. Raman. Succinct ordinal trees with level-ancestor queries. In
Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
1-10, 2004.

G. Jacobson. Space-efficient static trees and graphs. In Proceedings of the 30th IEEE Symposium
on Foundations of Computer Science (FOCS), pages 549-554, 1989.

Y. Li, C. Yu, and H. V. Jagadish. Schema-free XQuery. In VLDB, 2004.

D. Okanohara and K. Sadakane. Practical entropy-compressed rank/select dictionary. In
Proceedings of the 14th International Workshop on Algorithms and Data Structures (WADS),
volume 1671 of Lecture Notes in Computer Science (LNCS). Springer-Verlag, 2007.

R. Raman, V. Raman, and S. S. Rao. Succinct indexable dictionaries with applications to
encoding k-ary trees and multisets. In Proceedings of the 13th Annual ACM-SIAM Symposium
on Discrete algorithms, pages 233-242, 2002.

K. Sadakane and R. Grossi. Squeezing succinct data structures into entropy bounds. In
Proceedings of the 17th annual ACM-SIAM symposium on Discrete algorithm, pages 1230—
1239, 2006.

A. Schmidt, M. L. Kersten, and M. Windhouwer. Querying XML documents made easy: Nearest
concept queries. In ICDE, pages 321-329, 2001.

Y. Xu and Y. Papakonstantinou. Efficient keyword search for smallest LCAs in XML databases.
In SIGMOD °05: Proceedings of the 2005 ACM SIGMOD international conference on Manage-
ment of data, pages 527-538, New York, NY, USA, 2005. ACM Press.

F. Yergeau, T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E. Maler. Extensible Markup
Language (XML) 1.0 (third edition). Technical report, W3C Recommendation, February 2004.

12

